Medical Book

Search

Showing results for: Array

    Medical Book

    98 Quantity of assimilated oxygen on 100 gr. of cerebral tissue

    98 Quantity of assimilated oxygen on 100 gr. of cerebral tissue

    Quantity of assimilated oxygen on 100 gr. of cerebral tissue

    Quantity of assimilated oxygen on 100 gr. of cerebral tissue

     

    The quantity of consumed oxygen per 100 g brain tissue is associated with a complex cause, involved in the redox processes, lipid peroxidation reactions, and with a state of thyroid blood circulation regulation. Thyroid blood circulation determines the transportation of oxygen and its consumption by inner organs due to the activation of thyroid hormones T3 and T4. This index depends on the activation or inactivation of organ oxygen consumption. This value averages 2.5-3.5 ml/100 g tissue for adults and 3.5-6 ml/100 g tissue for children.

     

    Oxygen Delivery and Autoregulation

    The weight of the brain is only 2% of the human body, but cerebral tissue uses 25% of the glucose and about 20% of the oxygen delivered to function normally []. Oxygen consumption is 3.5 mL of oxygen/100 g tissue/1 min; therefore, the regulation of blood flow and delivery of oxygen to cerebral tissue is crucial for brain function []. Importantly, 75–80% of the energy consumed by neurons is used at the synapses to restore the neuronal membrane potentials lost during depolarization []. The continuous supply of oxygen to the brain occurs via arterial blood and is transported to brain tissue by diffusion. Diffusion is linked to the oxygen conductivity of cerebral tissue, determined by the geometry of capillaries (distance and area) and the metabolism of tissue (oxygen gradient from capillary to tissue) []. Extraction of oxygen is inversely proportional to blood flow (when metabolism is constant) and directly proportional to metabolism (when flow is constant) and the area between tissue and capillaries. Thus, a reduction in oxygen delivery increases oxygen extraction. It should be noted that when cerebral blood flow (CBF) is reduced by 50–60%, the consequent elevation of oxygen extraction is insufficient to maintain proper cerebral oxygenation and a constant cerebral metabolic rate of oxygen (CMRO2) []. Thus, cerebral oxygen delivery is determined by blood oxygen content and cerebral blood flow. In physiological conditions, total blood flow in the brain is constant because of the contribution of the large arteries to vascular resistance, as well as the impact of the parenchymal arterioles on considerable basal tone.

    Autoregulation of cerebral blood flow is the mechanism that enables the brain to maintain relatively constant blood flow through changes in perfusion pressure []. In a normotensive, physiological state, the ensuing cerebral perfusion pressure (CPP) is in the range of 60 to 160 mmHg, and CBF is maintained at 50 mL per 100 g of brain tissue per minute. Outside of this range, autoregulation is lost, and CBF starts to be dependent on MAP in a linear mode []. A drop of CPP below the lower limit of 50 mmHg results in cerebral ischemia []. This reduction of CBF is compensated for by elevated oxygen extraction from the blood.

    The individualization of care by targeting optimal, near to cerebral autoregulation (CA)-guided CPP is connected with improved outcomes in TBI patients []. It is worth remembering that combined brain tissue oxygen with ICP/CCP-guided therapy strongly ameliorates favorable long-term outcomes []. In addition, in a recent meta-analysis, Xie et al. documented that this combined therapy did not present any effects on mortality, ICP/CPP and length of stay of patients after TBI [].

    Over a physiological range of partial oxygen pressure (PaO2) (75–100 mmHg; 7–13.33 kPa), PaO2 has little effect on global CBF as long as it does not fall below 50 mmHg (6.67 kPa). This is because CBF is connected to the arterial content of oxygen rather than PaO2. The form of the hemoglobin–oxygen dissociation curve indicates that the arterial content of oxygen is comparatively stable over the discussed PaO2 range [].

    The primary gradient determining the oxygen level in the brain may be enhanced by a gradient-independent mechanism of cerebral vessel tone changes and increases in CBF during functional neural activation (neurovascular coupling) [,]. The main role of this mechanism is to transport higher levels of oxygen in advance of the elevated consumption during neuronal activation [].

    Impairment of cerebral perfusion and metabolism following brain injury has been documented repeatedly. Unfavorable outcomes after brain injury are connected with hypoperfusion and decreased glucose metabolism and CMRO2 []. Recent data have documented a connection between CMRO2 and Glasgow Coma Score (GCS) after traumatic brain injury [,,,]. Soustiel et al. demonstrated that in TBI patients, CBF is somewhat reduced during the first 24 h, and greater hypovolemia is observed following poor outcomes. Importantly, a decrease in CMRO2 and the cerebral rate of glucose metabolism (CMRG) correlates with worse outcomes [].

    Oxygen Consumption

    Oxygen is transported to the cerebral cells by blood diffusion from the capillary to the mitochondria, until it is consumed in the mitochondria as part of oxidative metabolism. CMRO2 is the rate of consumption and energy homeostasis in the brain and in healthy, awake people, averages 3.3 mL/100 g/min []. It is related to CBF. Under elevated metabolic demand, the cerebral vasculature dilates to supply an appropriate increase in CBF.

    Importantly, with elevated neural activity, CMRO2 also rises [,]. In a normal, unstimulated brain, energy is mostly provided by glucose oxidation. Nevertheless, the metabolic rates of the oxygen-to-glucose ratio, CMRO2/CMR(glc), called the oxygen-to-glucose index (OGI), increase during activation and diverge from the textbook value of 6. In addition, the levels of lactates in the brain increase during sensory (e.g., visual) stimulation []. This oxidative metabolism yields more energy as compared to glycolysis, but precise measurements of this process are limited []. Mitochondria present a high metabolic activity and a critical role in aerobic energy production, and their main function is the production of adenosine triphosphate (ATP) through oxidative phosphorylation.

    Mitochondrial dysfunction is a major factor in the occurrence of cell damage. Successful resuscitation during ischemia/reperfusion demands the reestablishment of aerobic metabolism by reperfusion of oxygenated blood. Mitochondria play a fundamental role as effectors of reperfusion injury. Damage to the organelle impairs oxidative phosphorylation and elimination of cytochrome c in the cytosol. The main mechanisms are oxidative stress and Ca2+ overload [].

    Disturbances in oxygen delivery stop electron flow and interrupt the generation of the “proton motive force” important in ATP production mentioned above. Of course, cells may produce ATP anaerobically by glycolysis. However, this process is less effective, insufficient for metabolic demands, and the final products are lactates.

    Hypoxia

    The brain is one of the most sensitive organs to hypoxia, reoxygenation and oxidative stress. As mentioned above, the brain has very high metabolic oxygen requirements, and it is highly susceptible to hypoxic damage (Table 1).

    Table 1


    Potentially effect of disorders in oxygen delivery to the brain on selected pathways and factors. Up arrows indicate the direction of the mechanism that may be intensified to varying degrees, depending on the causative factor. The number of arrows defines the intensity of the processes.

     

    Clinical implications of hypoxia:

    • Reduced brain tissue oxygenation is a predictor of poor outcome following severe traumatic brain injury.
    • Hypoxic–ischemic brain injury (HIBI) is associated with significant mortality and morbidity [].
    • The LOCO2 study documented that targeting lower PaO2 improves outcomes in patients with acute respiratory distress syndrome (ARDS) [].
    • The brain tissue oxygen tension (PbtO2) is crucial, the second monitored variable after ICP, representing multimodality monitoring in TBI patients [,].
    • Secondary hypoxia is connected with extended production of cytokines in CSF and superior elevation of serum biomarkers such as myelin-basic protein (MBP) and S100 [].
    • The MBP, S100 and neuron-specific enolase (NSE) biomarkers are more elevated in patients with hypoxia and unfavorable outcomes (Extended Glasgow Outcome Coma Score (GOSE) 1–4) []
    • HIBI, as a two-hit model, is an effect of primary and secondary ischemic/hypoxic damage predisposing to overall devastating severe injury of neurovascular units []
    • Secondary brain hypoxia is connected with de novo neuronal and astroglial injury. Importantly, secondary hypoxia is associated with cerebral proinflammatory response but not parallel cerebral endothelial injury [].
    • Protocols based on PbtO2 and ICP monitoring significantly decrease cerebral hypoxia time after TBI [].
    • Acute intermittent hypoxia (AIH) and task-specific training (TST) may synergistically improve motor functions after central nervous system injury [].

    Clinical implications of hyperoxia:

    • Hyperoxia is associated with higher mortality and worse short-term functional outcomes, especially in patients who receive uncontrolled oxygen delivery during the first 24 h after brain injury (probably because of hyperoxia-induced oxygen-free radical toxicity with or without vasoconstriction) [].
    • Potential toxicity of a high oxygen concentration (patients receiving FiO2 of more than 0.6).
    • Previous studies documented that higher inspired oxygen concentration is associated with acute lung injury, with mild to severe diffuse alveolar damage (DAD) [].
    • High oxygen levels within 72 h after aneurysmal rupture is an uninfluenced predictor of cerebral vasospasm [].
    • In addition, liberal oxygen therapy increased 30-day mortality compared with conservative therapy [].
    • Controversial high-dose oxygen therapy recommendations to reduce surgical site infections (SSIs) by World Health Organization global guidelines for the prevention of surgical site infection [].
    • Hyperoxemia may reduce cardiac output and increase systemic vascular resistance in patients with cardiovascular failure [].

     

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698645/

    1. Semenza G.L. Life with Oxygen. Science. 2007;318:62–64. doi: 10.1126/science.1147949. [PubMed] [CrossRef[]

    2. Özugur S., Kunz L., Straka H. Relationship between oxygen consumption and neuronal activity in a defined neural circuit. BMC Biol. 2020;18:76. doi: 10.1186/s12915-020-00811-6. [PMC free article] [PubMed] [CrossRef[]

    3. Roy C.S., Sherrington C.S. On the Regulation of the Blood-supply of the Brain. J. Physiol. 1890;11:85–158. doi: 10.1113/jphysiol.1890.sp000321. [PMC free article] [PubMed] [CrossRef[]

    4. Maas A.I.R., Menon D.K., Adelson P.D., Andelic N., Bell M.J., Belli A., Bragge P., Brazinova A., Büki A., Chesnut R.M., et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048. doi: 10.1016/S1474-4422(17)30371-X. [PubMed] [CrossRef[]

    5. Chesnut R.M., Marshall L.F., Klauber M.R., Blunt B.A., Baldwin N., Eisenberg H.M., Jane J.A., Marmarou A., Foulkes M.A. The Role of Secondary Brain Injury in Determining Outcome from Severe Head Injury. J. Trauma Inj. Infect. Crit. Care. 1993;34:216–222. doi: 10.1097/00005373-199302000-00006. [PubMed] [CrossRef[]

    6. Volpi P.C., Robba C., Rota M., Vargiolu A., Citerio G. Trajectories of early secondary insults correlate to outcomes of traumatic brain injury: Results from a large, single centre, observational study. BMC Emerg. Med. 2018;18:52. doi: 10.1186/s12873-018-0197-y. [PMC free article] [PubMed] [CrossRef[]

    7. Maloney-Wilensky E., Gracias V., Itkin A., Hoffman K., Bloom S., Yang W., Christian S., Leroux P.D. Brain tissue oxygen and outcome after severe traumatic brain injury: A systematic review. Crit. Care Med. 2009;37:2057–2063. doi: 10.1097/CCM.0b013e3181a009f8. [PubMed] [CrossRef[]

    8. Jeremitsky E., Omert L., Dunham C.M., Protetch J., Rodriguez A. Harbingers of Poor Outcome the Day after Severe Brain Injury: Hypothermia, Hypoxia, and Hypoperfusion. J. Trauma Inj. Infect. Crit. Care. 2003;54:312–319. doi: 10.1097/01.TA.0000037876.37236.D6. [PubMed] [CrossRef[]

    9. Bogossian E.G., Diaferia D., Djangang N.N., Menozzi M., Vincent J.-L., Talamonti M., Dewitte O., Peluso L., Barrit S., Al Barajraji M., et al. Brain tissue oxygenation guided therapy and outcome in non-traumatic subarachnoid hemorrhage. Sci. Rep. 2021;11:16235. doi: 10.1038/s41598-021-95602-6. [PMC free article] [PubMed] [CrossRef[]

    10. Martini R.P., Deem S., Treggiari M.M. Targeting Brain Tissue Oxygenation in Traumatic Brain Injury. Respir. Care. 2012;58:162–172. doi: 10.4187/respcare.01942. [PubMed] [CrossRef[]

    11. Chesnut R., Aguilera S., Buki A., Bulger E., Citerio G., Cooper D.J., Arrastia R.D., Diringer M., Figaji A., Gao G., et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC) Intensiv. Care Med. 2020;46:919–929. doi: 10.1007/s00134-019-05900-x. [PMC free article] [PubMed] [CrossRef[]

    12. Rakhit S., Nordness M.F., Lombardo S.R., Cook M., Smith L., Patel M.B. Management and Challenges of Severe Traumatic Brain Injury. Semin. Respir. Crit. Care Med. 2021;42:127–144. doi: 10.1055/s-0040-1716493. [PubMed] [CrossRef[]

    13. Sekhon M.S., Gooderham P., Menon D.K., Brasher P.M.A., Foster D., Cardim D., Czosnyka M., Smielewski P., Gupta A.K., Ainslie P.N., et al. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest. Crit. Care Med. 2019;47:960–969. doi: 10.1097/CCM.0000000000003745. [PubMed] [CrossRef[]

    14. Hyder F., Rothman D.L., Bennett M.R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA. 2013;110:3549–3554. doi: 10.1073/pnas.1214912110. [PMC free article] [PubMed] [CrossRef[]

    15. Rink C., Khanna S. Significance of Brain Tissue Oxygenation and the Arachidonic Acid Cascade in Stroke. Antioxid. Redox Signal. 2011;14:1889–1903. doi: 10.1089/ars.2010.3474. [PMC free article] [PubMed] [CrossRef[]

    16. Harris J.J., Jolivet R., Attwell D. Synaptic Energy Use and Supply. Neuron. 2012;75:762–777. doi: 10.1016/j.neuron.2012.08.019. [PubMed] [CrossRef[]

    17. Gjedde A. Advances in Experimental Medicine and Biology. Springer; Boston, MA, USA: 2005. The pathways of oxygen in brain. I. Delivery and metabolism of oxygen; p. 566. [PubMed[]

    18. Bain A.R., Morrison S., Ainslie P.N. Cerebral oxygenation and hyperthermia. Front. Physiol. 2014;5:92. doi: 10.3389/fphys.2014.00092. [PMC free article] [PubMed] [CrossRef[]

    19. Paulson O.B., Strandgaard S., Edvinsson L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990;2:161–192. [PubMed[]

    20. Cipolla M.J., Osol G. Vascular Smooth Muscle Actin Cytoskeleton in Cerebral Artery Forced Dilatation. Stroke. 1998;29:1223–1228. doi: 10.1161/01.STR.29.6.1223. [PubMed] [CrossRef[]

    21. Baron J.-C. Perfusion Thresholds in Human Cerebral Ischemia: Historical Perspective and Therapeutic Implications. Cerebrovasc. Dis. 2001;11((Suppl. 1)):2–8. doi: 10.1159/000049119. [PubMed] [CrossRef[]

    22. Tas J., Beqiri E., van Kaam R.C., Czosnyka M., Donnelly J., Haeren R.H., van der Horst I.C., Hutchinson P.J., van Kuijk S.M., Liberti A.L., et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. J. Neurotrauma. 2021;38:2790–2800. doi: 10.1089/neu.2021.0197. [PubMed] [CrossRef[]

    23. Xie Q., Wu H.-B., Yan Y.-F., Liu M., Wang E.-S. Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy and Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy in Traumatic Brain Injury: A Meta-Analysis. World Neurosurg. 2017;100:118–127. doi: 10.1016/j.wneu.2016.12.097. [PubMed] [CrossRef[]

    24. McDowall D.G. Interrelationships between blood oxygen tensions and cerebral blood flow. Oxyg. Meas. Blood Tissues. 1966;4:205–219. [PubMed[]

    25. Attwell D., Buchan A.M., Charpak S., Lauritzen M.J., MacVicar B.A., Newman E.A. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–243. doi: 10.1038/nature09613. [PMC free article] [PubMed] [CrossRef[]

    26. Muoio V., Persson P.B., Sendeski M.M. The neurovascular unit—concept review. Acta Physiol. 2014;210:790–798. doi: 10.1111/apha.12250. [PubMed] [CrossRef[]

    27. Sokoloff L. Energetics of Functional Activation in Neural Tissues. Neurochem. Res. 1999;24:321–329. doi: 10.1023/A:1022534709672. [PubMed] [CrossRef[]

    28. Hattori N., Huang S.-C., Wu H.-M., Yeh E., Glenn T.C., Vespa P.M., McArthur D., E Phelps M., A Hovda D., Bergsneider M. Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injury. J. Nucl. Med. 2003;44:1709. [PubMed[]

    29. Bergsneider M., Hovda D.A., Lee S.M., Kelly D.F., McArthur D., Vespa P.M., Lee J.H., Huang S.-C., Martin N., Phelps M.E., et al. Dissociation of Cerebral Glucose Metabolism and Level of Consciousness During the Period of Metabolic Depression Following Human Traumatic Brain Injury. J. Neurotrauma. 2000;17:389–401. doi: 10.1089/neu.2000.17.389. [PubMed] [CrossRef[]

    30. Bergsneider M., Hovda D.A., Shalmon E., Kelly D.F., Vespa P.M., Martin N.A., Phelps M.E., McArthur D.L., Caron M.J., Kraus J.F., et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study. J. Neurosurg. 1997;86:241–251. doi: 10.3171/jns.1997.86.2.0241. [PubMed] [CrossRef[]

    31. Obrist W.D., Langfitt T.W., Jaggi J.L., Cruz J., Gennarelli T.A. Cerebral blood flow and metabolism in comatose patients with acute head injury: Relationship to intracranial hypertension. J. Neurosurg. 1984;61:241–253. doi: 10.3171/jns.1984.61.2.0241. [PubMed] [CrossRef[]

    32. Soustiel J.F., Glenn T.C., Shik V., Boscardin J., Mahamid E., Zaaroor M. Monitoring of Cerebral Blood Flow and Metabolism in Traumatic Brain Injury. J. Neurotrauma. 2005;22:955–965. doi: 10.1089/neu.2005.22.955. [PubMed] [CrossRef[]

    33. Cold G.E. Cerebral Metabolic Rate of Oxygen (CMRO2) in the Acute Phase of Brain Injury. Acta Anaesthesiol. Scand. 1978;22:249–256. doi: 10.1111/j.1399-6576.1978.tb01299.x. [PubMed] [CrossRef[]

    34. Shulman R.G., Hyder F., Rothman D.L. Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed. 2001;14:389–396. doi: 10.1002/nbm.741. [PubMed] [CrossRef[]

    35. Thompson Jeffrey K., Peterson Matthew R., Freeman Ralph D. Single-Neuron Activity and Tissue Oxygenation in the Cerebral Cortex. Science. 2003;299:1070–1072. doi: 10.1126/science.1079220. [PubMed] [CrossRef[]

    36. Hyder F., Kida I., Behar K.L., Kennan R.P., Maciejewski P.K., Rothman D.L. Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR Biomed. 2001;14:413–431. doi: 10.1002/nbm.733. [PubMed] [CrossRef[]

    37. Hochachka P.W., Buck L.T., Doll C.J., Land S.C. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA. 1996;93:9493–9498. doi: 10.1073/pnas.93.18.9493. [PMC free article] [PubMed] [CrossRef[]

    38. Boyer P.D. The Atp Synthase—A Splendid Molecular Machine. Annu. Rev. Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [PubMed] [CrossRef[]

    39. Wu I.C., Ohsawa I., Fuku N., Tanaka M. Metabolic analysis of 13C-labeled pyruvate for noninvasive assessment of mitochondrial function. Ann. N. Y. Acad. Sci. 2010;1201:111–120. doi: 10.1111/j.1749-6632.2010.05636.x. [PubMed] [CrossRef[]

    40. Wellen K.E., Thompson C.B. Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol. Cell. 2010;40:323–332. doi: 10.1016/j.molcel.2010.10.004. [PMC free article] [PubMed] [CrossRef[]

    41. Sas K., Robotka H., Toldi J., Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007;257:221–239. doi: 10.1016/j.jns.2007.01.033. [PubMed] [CrossRef[]

    42. Diringer M.N., Yundt K., Videen T.O., Adams R.E., Zazulia A.R., Deibert E., Aiyagari V., Dacey R.G., Grubb R.L., Powers W.J. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. J. Neurosurg. 2000;92:7–13. doi: 10.3171/jns.2000.92.1.0007. [PubMed] [CrossRef[]

    43. Zhang Z., Guo Q., Wang E. Hyperventilation in neurological patients: From physiology to outcome evidence. Curr. Opin. Anesthesiol. 2019;32:568–573. doi: 10.1097/ACO.0000000000000764. [PMC free article] [PubMed] [CrossRef[]

    44. Mas A., Saura P., Joseph D., Blanch L., Baigorri F., Artigas A., Fernandez R. Effect of acute moderate changes in PaCO2 on global hemodynamics and gastric perfusion. Crit. Care Med. 2000;28:360–365. doi: 10.1097/00003246-200002000-00012. [PubMed] [CrossRef[]

    45. Howarth C., Sutherland B.A., Choi H.B., Martin C., Lind B.L., Khennouf L., LeDue J.M., Pakan J.M., Ko R.W., Ellis-Davies G., et al. A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain. J. Neurosci. 2017;37:2403–2414. doi: 10.1523/JNEUROSCI.0005-16.2016. [PMC free article] [PubMed] [CrossRef[]

    46. Carney N., Totten A.M., O’Reilly C., Ullman J.S., Hawryluk G.W., Bell M.J., Bratton S.L., Chesnut R., Harris O.A., Kissoon N., et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80:6–15. doi: 10.1227/NEU.0000000000001432. [PubMed] [CrossRef[]

    47. Oddo M., Bösel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocritical Care. 2014;21:103–120. doi: 10.1007/s12028-014-0024-6. [PubMed] [CrossRef[]

    48. Chen R., Lai U.H., Zhu L., Singh A., Ahmed M., Forsyth N.R. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front. Cell Dev. Biol. 2018;6:132. doi: 10.3389/fcell.2018.00132. [PMC free article] [PubMed] [CrossRef[]

    49. Banasiak K.J., Xia Y., Haddad G.G. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog. Neurobiol. 2000;62:215–249. doi: 10.1016/S0301-0082(00)00011-3. [PubMed] [CrossRef[]

    50. Chang E., Hornick K., Fritz K.I., Mishra O.P., Delivoria-Papadopoulos M. Effect of Hyperoxia on Cortical Neuronal Nuclear Function and Programmed Cell Death Mechanisms. Neurochem. Res. 2007;32:1142–1149. doi: 10.1007/s11064-007-9282-4. [PubMed] [CrossRef[]

    51. Serocki M., Bartoszewska S., Janaszak-Jasiecka A., Ochocka R.J., Collawn J.F., Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis. 2018;21:183–202. doi: 10.1007/s10456-018-9600-2. [PMC free article] [PubMed] [CrossRef[]

    52. Koh M.Y., Lemos R., Liu X., Powis G. The hypoxia-associated factor switches cells from HIF-1α-to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 2011;71:4015–4027. doi: 10.1158/0008-5472.CAN-10-4142. [PMC free article] [PubMed] [CrossRef[]

    53. Masamoto K., Tanishita K. Oxygen Transport in Brain Tissue. J. Biomech. Eng. 2009;131:074002. doi: 10.1115/1.3184694. [PubMed] [CrossRef[]

    54. Taguchi H., Heistad D.D., Kitazono T., Faraci F.M. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia. Circ. Res. 1994;74:1005–1008. doi: 10.1161/01.RES.74.5.1005. [PubMed] [CrossRef[]

    55. Johnston A.J., Steiner L.A., Gupta A.K., Menon D.K. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br. J. Anaesth. 2003;90:774–786. doi: 10.1093/bja/aeg104. [PubMed] [CrossRef[]

    56. Xu K., LaManna J.C. Chronic hypoxia and the cerebral circulation. J. Appl. Physiol. 2006;100:725–730. doi: 10.1152/japplphysiol.00940.2005. [PubMed] [CrossRef[]

    57. Boero J.A., Ascher J., Arregui A., Rovainen C., Woolsey T.A. Increased brain capillaries in chronic hypoxia. J. Appl. Physiol. 1999;86:1211–1219. doi: 10.1152/jappl.1999.86.4.1211. [PubMed] [CrossRef[]

    58. Torres-Cuevas I., Parra-Llorca A., Sánchez-Illana Á., Nuñez-Ramiro A., Kuligowski J., Cháfer-Pericás C., Cernada M., Escobar J., Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–681. doi: 10.1016/j.redox.2017.03.011. [PMC free article] [PubMed] [CrossRef[]

    59. Rocha-Ferreira E., Hristova M. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast. 2016;2016:4901014. doi: 10.1155/2016/4901014. [PMC free article] [PubMed] [CrossRef[]

    60. Sekhon M.S., Ainslie P.N., Griesdale D.E. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: A “two-hit” model. Crit. Care. 2017;21:90. doi: 10.1186/s13054-017-1670-9. [PMC free article] [PubMed] [CrossRef[]

    61. Chen H., Yoshioka H., Kim G.S., Jung J.E., Okami N., Sakata H., Maier C.M., Narasimhan P., Goeders C.E., Chan P.H. Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxid. Redox Signal. 2011;14:1505–1517. doi: 10.1089/ars.2010.3576. [PMC free article] [PubMed] [CrossRef[]

    62. Coimbra-Costa D., Alva N., Duran M., Carbonell T., Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 2017;12:216–225. doi: 10.1016/j.redox.2017.02.014. [PMC free article] [PubMed] [CrossRef[]

    63. Peña F., Ramirez J.-M. Hypoxia-induced changes in neuronal network properties. Mol. Neurobiol. 2005;32:251–283. doi: 10.1385/MN:32:3:251. [PubMed] [CrossRef[]

    64. Majmundar A.J., Wong W.J., Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010;40:294–309. doi: 10.1016/j.molcel.2010.09.022. [PMC free article] [PubMed] [CrossRef[]

    65. Dengler V.L., Galbraith M.D., Espinosa J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014;49:1–15. doi: 10.3109/10409238.2013.838205. [PMC free article] [PubMed] [CrossRef[]

    66. Chávez J.C., Agani F., Pichiule P., LaManna J.C. Expression of hypoxia-inducible factor-1α in the brain of rats during chronic hypoxia. J. Appl. Physiol. 2000;89:1937–1942. doi: 10.1152/jappl.2000.89.5.1937. [PubMed] [CrossRef[]

    67. Lukyanova L.D., Kirova Y.I. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front. Neurosci. 2015;9:320. doi: 10.3389/fnins.2015.00320. [PMC free article] [PubMed] [CrossRef[]

    68. Brix B., Mesters J.R., Pellerin L., Jöhren O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J. Neurosci. 2012;32:9727–9735. doi: 10.1523/JNEUROSCI.0879-12.2012. [PMC free article] [PubMed] [CrossRef[]

    69. Koh M.Y., Powis G. Passing the baton: The HIF switch. Trends Biochem. Sci. 2012;37:364–372. doi: 10.1016/j.tibs.2012.06.004. [PMC free article] [PubMed] [CrossRef[]

    70. Luo W., Zhong J., Chang R., Hu H., Pandey A., Semenza G.L. Hsp70 and CHIP Selectively Mediate Ubiquitination and Degradation of Hypoxia-inducible Factor (HIF)-1α but Not HIF-2α 2. J. Biol. Chem. 2010;285:3651–3663. doi: 10.1074/jbc.M109.068577. [PMC free article] [PubMed] [CrossRef[]

    71. Liu Y.V., Semenza G.L. RACK1 vs. HSP90: Competition for HIF-1α degradation vs. stabilization. Cell Cycle. 2007;6:656–659. doi: 10.4161/cc.6.6.3981. [PubMed] [CrossRef[]

    72. Liu Y.V., Baek J.H., Zhang H., Diez R., Cole R.N., Semenza G.L. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α Mol. Cell. 2007;25:207–217. doi: 10.1016/j.molcel.2007.01.001. [PMC free article] [PubMed] [CrossRef[]

    73. Ravi R., Mookerjee B., Bhujwalla Z.M., Sutter C.H., Artemov D., Zeng Q., Dillehay L.E., Madan A., Semenza G.L., Bedi A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α Genes Dev. 2000;14:34–44. doi: 10.1101/gad.14.1.34. [PMC free article] [PubMed] [CrossRef[]

    74. Bhattacharya R., SenBanerjee S., Lin Z., Mir S., Hamik A., Wang P., Mukherjee P., Mukhopadhyay D., Jain M.K. Inhibition of Vascular Permeability Factor/Vascular Endothelial Growth Factor-mediated Angiogenesis by the Kruppel-like Factor KLF2. J. Biol. Chem. 2005;280:28848–28851. doi: 10.1074/jbc.C500200200. [PubMed] [CrossRef[]

    75. Kawanami D., Mahabeleshwar G.H., Lin Z., Atkins G.B., Hamik A., Haldar S.M., Maemura K., LaManna J.C., Jain M.K. Kruppel-like Factor 2 Inhibits Hypoxia-inducible Factor 1α Expression and Function in the Endothelium. J. Biol. Chem. 2009;284:20522–20530. doi: 10.1074/jbc.M109.025346. [PMC free article] [PubMed] [CrossRef[]

    76. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Rådmark O., Kim S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. doi: 10.1038/nature01957. [PubMed] [CrossRef[]

    77. Davis G.M., Haas M.A., Pocock R. MicroRNAs: Not “fine-tuners” but key regulators of neuronal development and function. Front. Neurol. 2015;6:245. doi: 10.3389/fneur.2015.00245. [PMC free article] [PubMed] [CrossRef[]

    78. Xiao S., Ma Y., Zhu H., Sun H., Yin Y., Feng G. miRNA functional synergistic network analysis of mice with ischemic stroke. Neurol. Sci. 2015;36:143–148. doi: 10.1007/s10072-014-1904-4. [PubMed] [CrossRef[]

    79. Chan S.Y., Loscalzo J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle. 2010;9:1072–1083. doi: 10.4161/cc.9.6.11006. [PMC free article] [PubMed] [CrossRef[]

    80. Yang G.-Y., Zeng L., Liu J., Wang Y., Wang L., Weng S., Tang Y., Zheng C., Cheng Q., Chen S. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front. Biosci. 2011;E3:1265–1272. doi: 10.2741/e330. [PubMed] [CrossRef[]

    81. Qiu J., Zhou X.-Y., Zhou X.-G., Cheng R., Liu H.-Y., Li Y. Neuroprotective effects of microRNA-210 on hypoxic-ischemic encephalopathy. BioMed Res. Int. 2013;2013:350419. doi: 10.1155/2013/350419. [PMC free article] [PubMed] [CrossRef[]

    82. Tan K.S., Armugam A., Sepramaniam S., Lim K.Y., Setyowati K.D., Wang C.W., Jeyaseelan K. Expression Profile of MicroRNAs in Young Stroke Patients. PLoS ONE. 2009;4:e7689. doi: 10.1371/journal.pone.0007689. [PMC free article] [PubMed] [CrossRef[]

    83. Minhas G., Mathur D., Ragavendrasamy B., Sharma N.K., Paanu V., Anand A. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies. Front. Neurosci. 2017;11:386. doi: 10.3389/fnins.2017.00386. [PMC free article] [PubMed] [CrossRef[]

    84. Bobryshev P., Bagaeva T., Filaretova L. Ischemic preconditioning attenuates gastric ischemia-reperfusion injury through involvement of glucocorticoids. J. Physiol. Pharmacol. 2009;60((Suppl. 7)):155–160. [PubMed[]

    85. Rybnikova E.A., Mironova V.I., Pivina S.G., Ordyan N.E., Tulkova E.I., Samoilov M.O. Hormonal Mechanisms of Neuroprotective Effects of the Mild Hypoxic Preconditioning in Rats. 1st ed. Springer Nature BV; Berlin/Heidelberg, Germany: 2008. p. 239. [PubMed[]

    86. Davis C., Hackett P. Advances in the prevention and treatment of high altitude illness. Emerg. Med. Clin. 2017;35:241–260. doi: 10.1016/j.emc.2017.01.002. [PubMed] [CrossRef[]

    87. Rybnikova E., Mironova V., Pivina S., Tulkova E., Ordyan N., Nalivaeva N., Turner A., Samoilov M. Involvement of the hypothalamic-pituitary-adrenal axis in the antidepressant-like effects of mild hypoxic preconditioning in rats. Psychoneuroendocrinology. 2007;32:813–823. doi: 10.1016/j.psyneuen.2007.05.010. [PubMed] [CrossRef[]

    88. Vanderhaeghen T., Beyaert R., Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front. Immunol. 2021;12:684085. doi: 10.3389/fimmu.2021.684085. [PMC free article] [PubMed] [CrossRef[]

    89. Kodama T., Shimizu N., Yoshikawa N., Makino Y., Ouchida R., Okamoto K., Hisada T., Nakamura H., Morimoto C., Tanaka H. Role of the Glucocorticoid Receptor for Regulation of Hypoxia-dependent Gene Expression. J. Biol. Chem. 2003;278:33384–33391. doi: 10.1074/jbc.M302581200. [PubMed] [CrossRef[]

    90. Lim W., Park C., Shim M.K., Lee Y.H., Lee Y.M., Lee Y. Glucocorticoids suppress hypoxia-induced COX-2 and hypoxia inducible factor-1α expression through the induction of glucocorticoid-induced leucine zipper. Br. J. Pharmacol. 2014;171:735–745. doi: 10.1111/bph.12491. [PMC free article] [PubMed] [CrossRef[]

    91. Hoiland R.L., Ainslie P.N., Wellington C.L., Cooper J., Stukas S., Thiara S., Foster D., Fergusson N.A., Conway E.M., Menon D.K., et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post–Cardiac Arrest. Circ. Res. 2021;129:583–597. doi: 10.1161/CIRCRESAHA.121.319157. [PMC free article] [PubMed] [CrossRef[]

    92. Barrot L., Asfar P., Mauny F., Winiszewski H., Montini F., Badie J., Quenot J.-P., Pili-Floury S., Bouhemad B., Louis G., et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2020;382:999–1008. doi: 10.1056/NEJMoa1916431. [PubMed] [CrossRef[]

    93. Bardt T.F., Unterberg A.W., Härtl R., Kiening K.L., Schneider G.H., Lanksch W.R. Monitoring of brain tissue PO2 in traumatic brain injury: Effect of cerebral hypoxia on outcome. In: Marmarou A., Bullock R., Avezaat C., Baethmann A., Becker D., Brock M., Hoff J., Nagai H., Reulen H.-J., Teasdale G., editors. Intracranial Pressure and Neuromonitoring in Brain Injury. Springer; Vienna, Austria: 1998. pp. 153–156. [PubMed[]

    94. Yan E.B., Satgunaseelan L., Paul E., Bye N., Nguyen P., Agyapomaa D., Kossmann T., Rosenfeld J.V., Morganti-Kossmann C. Post-Traumatic Hypoxia Is Associated with Prolonged Cerebral Cytokine Production, Higher Serum Biomarker Levels, and Poor Outcome in Patients with Severe Traumatic Brain Injury. J. Neurotrauma. 2013;31:618–629. doi: 10.1089/neu.2013.3087. [PMC free article] [PubMed] [CrossRef[]

    95. Okonkwo D.O., Shutter L., Moore C., Temkin N.R., Puccio A.M., Madden C.J., Andaluz N., Chesnut R., Bullock M.R., Grant G.A., et al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II. Crit. Care Med. 2017;45:1907–1914. doi: 10.1097/CCM.0000000000002619. [PMC free article] [PubMed] [CrossRef[]

    96. Welch J.F., Sutor T.W., Vose A.K., Perim R.R., Fox E.J., Mitchell G.S. Synergy between Acute Intermittent Hypoxia and Task-Specific Training. Exerc. Sport Sci. Rev. 2020;48:125–132. doi: 10.1249/JES.0000000000000222. [PMC free article] [PubMed] [CrossRef[]

    97. Gore A., Muralidhar M., Espey M.G., Degenhardt K., Mantell L.L. Hyperoxia sensing: From molecular mechanisms to significance in disease. J. Immunotoxicol. 2010;7:239–254. doi: 10.3109/1547691X.2010.492254. [PubMed] [CrossRef[]

    98. Bin-Jaliah I., Haffor A.-S. Ultrastructural Morphological Alterations during Hyperoxia Exposure in Relation to Glutathione Peroxidase Activity and Free Radicals Productions in the Mitochondria of the Cortical Brain. Int. J. Morphol. 2018;36:1310–1315. doi: 10.4067/S0717-95022018000401310. [CrossRef[]

    99. Chong Z.-Z., Lin S.H., Li F., Maiese K. The Sirtuin Inhibitor Nicotinamide Enhances Neuronal Cell Survival During Acute Anoxic Injury Through AKT, BAD, PARP, and Mitochondrial Associated. Curr. Neurovascular Res. 2005;2:271–285. doi: 10.2174/156720205774322584. [PMC free article] [PubMed] [CrossRef[]

    100. Terraneo L., Paroni R., Bianciardi P., Giallongo T., Carelli S., Gorio A., Samaja M. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol. 2017;11:12–20. doi: 10.1016/j.redox.2016.10.018. [PMC free article] [PubMed] [CrossRef[]

    101. Felderhoff-Mueser U., Bittigau P., Sifringer M., Jarosz B., Korobowicz E., Mahler L., Piening T., Moysich A., Grune T., Thor F., et al. Oxygen causes cell death in the developing brain. Neurobiol. Dis. 2004;17:273–282. doi: 10.1016/j.nbd.2004.07.019. [PubMed] [CrossRef[]

    102. Zhang Y., Park T.S., Gidday J.M. Hypoxic preconditioning protects human brain endothelium from ischemic apoptosis by Akt-dependent survivin activation. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2573–H2581. doi: 10.1152/ajpheart.01098.2006. [PubMed] [CrossRef[]

    103. Nayak G.H., Prentice H.M., Milton S.L. Neuroprotective signaling pathways are modulated by adenosine in the anoxia tolerant turtle. J. Cereb. Blood Flow Metab. 2011;31:467–475. doi: 10.1038/jcbfm.2010.109. [PMC free article] [PubMed] [CrossRef[]

    104. Mao M., Zhiling W., Hui Z., Shengfu L., Dan Y., Jiping H. Cellular levels of TrkB and MAPK in the neuroprotective role of BDNF for embryonic rat cortical neurons against hypoxia in vitro. Int. J. Dev. Neurosci. 2005;23:515–521. [PubMed[]

    105. Digicaylioglu M., Bichet S., Marti H.H., Wenger R.H., Rivas L.A., Bauer C., Gassmann M. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. USA. 1995;92:3717–3720. doi: 10.1073/pnas.92.9.3717. [PMC free article] [PubMed] [CrossRef[]

    106. Sanchez P.E., Fares R.P., Risso J.-J., Bonnet C., Bouvard S., Le-Cavorsin M., Georges B., Moulin C., Belmeguenai A., Bodennec J., et al. Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons. Proc. Natl. Acad. Sci. USA. 2009;106:9848–9853. doi: 10.1073/pnas.0901840106. [PMC free article] [PubMed] [CrossRef[]

    107. Sakanaka M., Wen T.-C., Matsuda S., Masuda S., Morishita E., Nagao M., Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA. 1998;95:4635–4640. doi: 10.1073/pnas.95.8.4635. [PMC free article] [PubMed] [CrossRef[]

    108. Kato S., Aoyama M., Kakita H., Hida H., Kato I., Ito T., Goto T., Hussein M.H., Sawamoto K., Togari H., et al. Endogenous erythropoietin from astrocyte protects the oligodendrocyte precursor cell against hypoxic and reoxygenation injury. J. Neurosci. Res. 2011;89:1566–1574. doi: 10.1002/jnr.22702. [PubMed] [CrossRef[]

    109. Brown G.C. Nitric oxide and neuronal death. Nitric Oxide. 2010;23:153–165. doi: 10.1016/j.niox.2010.06.001. [PubMed] [CrossRef[]

    110. Garry P.S., Ezra M., Rowland M.J., Westbrook J., Pattinson K.T.S. The role of the nitric oxide pathway in brain injury and its treatment—From bench to bedside. Exp. Neurol. 2015;263:235–243. doi: 10.1016/j.expneurol.2014.10.017. [PubMed] [CrossRef[]

    111. Cheng A., Wang S., Cai J., Rao M.S., Mattson M.P. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol. 2003;258:319–333. doi: 10.1016/S0012-1606(03)00120-9. [PubMed] [CrossRef[]

    112. Li S.-T., Pan J., Hua X.-M., Liu H., Shen S., Liu J.-F., Li B., Tao B.-B., Ge X.-L., Wang X.-H., et al. Endothelial Nitric Oxide Synthase Protects Neurons against Ischemic Injury through Regulation of Brain-Derived Neurotrophic Factor Expression. CNS Neurosci. Ther. 2014;20:154–164. doi: 10.1111/cns.12182. [PMC free article] [PubMed] [CrossRef[]

    113. Brune B., Zhou J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1α (HIF-1α) Curr. Med. Chem. 2003;10:845–855. doi: 10.2174/0929867033457746. [PubMed] [CrossRef[]

    114. Chen Z.Y., Wang L., Asavaritkrai P., Noguchi C.T. Up-regulation of erythropoietin receptor by nitric oxide mediates hypoxia preconditioning. J. Neurosci. Res. 2010;88:3180–3188. doi: 10.1002/jnr.22473. [PubMed] [CrossRef[]

    115. Kasuno K., Takabuchi S., Fukuda K., Kizaka-Kondoh S., Yodoi J., Adachi T., Semenza G.L., Hirota K. Nitric Oxide Induces Hypoxia-inducible Factor 1 Activation That Is Dependent on MAPK and Phosphatidylinositol 3-Kinase Signaling. J. Biol. Chem. 2004;279:2550–2558. doi: 10.1074/jbc.M308197200. [PubMed] [CrossRef[]

    116. Haase V.H. The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int. 2006;69:1302–1307. doi: 10.1038/sj.ki.5000221. [PubMed] [CrossRef[]

    117. Hoehn T., Felderhoff-Mueser U., Maschewski K., Stadelmann C., Sifringer M., Bittigau P., Koehne P., Hoppenz M., Obladen M., Bührer C. Hyperoxia Causes Inducible Nitric Oxide Synthase-Mediated Cellular Damage to the Immature Rat Brain. Pediatr. Res. 2003;54:179–184. doi: 10.1203/01.PDR.0000075220.17631.F1. [PubMed] [CrossRef[]

    118. Zhilyaev S.Y., Moskvin A.N., Platonova T.F., Gutsaeva D.R., Churilina I.V., Demchenko I.T. Hyperoxic Vasoconstriction in the Brain Is Mediated by Inactivation of Nitric Oxide by Superoxide Anions. Neurosci. Behav. Physiol. 2003;33:783–787. doi: 10.1023/A:1025145331149. [PubMed] [CrossRef[]

    119. Rocha-Ferreira E., Rudge B., Hughes M.P., Rahim A.A., Hristova M., Robertson N.J. Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. Oxidative Med. Cell. Longev. 2016;2016:5763743. doi: 10.1155/2016/5763743. [PMC free article] [PubMed] [CrossRef[]

    120. Attaye I., Smulders Y.M., De Waard M.C., Straaten H.M.O.-V., Smit B., Van Wijhe M.H., Musters R.J., Koolwijk P., Man A.M.E.S. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensiv. Care Med. Exp. 2017;5:22. doi: 10.1186/s40635-017-0135-4. [PMC free article] [PubMed] [CrossRef[]

    121. Demchenko I.T., Oury T.D., Crapo J.D., Piantadosi C.A. Regulation of the Brain’s Vascular Responses to Oxygen. Circ. Res. 2002;91:1031–1037. doi: 10.1161/01.RES.0000043500.03647.81. [PubMed] [CrossRef[]

    122. Pham H., Vottier G., Pansiot J., Duong-Quy S., Bollen B., Dalous J., Gallego J., Mercier J.-C., Dinh-Xuan A.T., Bonnin P., et al. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats. Exp. Neurol. 2014;252:114–123. doi: 10.1016/j.expneurol.2013.11.025. [PubMed] [CrossRef[]

    123. Brenner M., Stein D., Hu P., Kufera J., Wooford M., Scalea T. Association Between Early Hyperoxia and Worse Outcomes After Traumatic Brain Injury. Arch. Surg. 2012;147:1042–1046. doi: 10.1001/archsurg.2012.1560. [PubMed] [CrossRef[]

    124. Davis W.B., Rennard S.I., Bitterman P.B., Crystal R.G. Pulmonary oxygen toxicity: Early reversible changes in human alveolar structures induced by hyperoxia. N. Engl. J. Med. 1983;309:878–883. doi: 10.1056/NEJM198310133091502. [PubMed] [CrossRef[]

    125. Reynolds R.A., Amin S.N., Jonathan S.V., Tang A.R., Lan M., Wang C., Bastarache J.A., Ware L.B., Thompson R.C. Hyperoxemia and Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care. 2021;35:30–38. doi: 10.1007/s12028-020-01136-6. [PMC free article] [PubMed] [CrossRef[]

    126. Chu D.K., Kim L.H.-Y., Young P.J., Zamiri N., Almenawer S.A., Jaeschke R., Szczeklik W., Schünemann H.J., Neary J.D., Alhazzani W. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): A systematic review and meta-analysis. Lancet. 2018;391:1693–1705. doi: 10.1016/S0140-6736(18)30479-3. [PubMed] [CrossRef[]

    127. Suzuki S. Oxygen administration for postoperative surgical patients: A narrative review. J. Intensive Care. 2020;8:79. doi: 10.1186/s40560-020-00498-5. [PMC free article] [PubMed] [CrossRef[]

    128. Smit B., Smulders Y.M., van der Wouden J.C., Oudemans-van Straaten H.M., Spoelstra-de Man A.M.E. Hemodynamic effects of acute hyperoxia: Systematic review and meta-analysis. Crit. Care. 2018;22:45. doi: 10.1186/s13054-018-1968-2. [PMC free article] [PubMed] [CrossRef[]

    129. Chatzipanteli K., Alonso O.F., Kraydieh S., Dietrich W.D. Importance of Posttraumatic Hypothermia and Hyperthermia on the Inflammatory Response after Fluid Percussion Brain Injury: Biochemical and Immunocytochemical Studies. J. Cereb. Blood Flow Metab. 2000;20:531–542. doi: 10.1097/00004647-200003000-00012. [PubMed] [CrossRef[]

    130. Thompson H.J., Tkacs N.C., Saatman K.E., Raghupathi R., McIntosh T.K. Hyperthermia following traumatic brain injury: A critical evaluation. Neurobiol. Dis. 2003;12:163–173. doi: 10.1016/S0969-9961(02)00030-X. [PubMed] [CrossRef[]

    131. Truettner J.S., Bramlett H.M., Dietrich W.D. Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the Cerebral Vasculature. J. Neurotrauma. 2017;35:940–952. doi: 10.1089/neu.2017.5303. [PMC free article] [PubMed] [CrossRef[]

    132. Huang T., Solano J., He D., Loutfi M., Dietrich W.D., Kuluz J.W. Traumatic Injury Activates MAP Kinases in Astrocytes: Mechanisms of Hypothermia and Hyperthermia. J. Neurotrauma. 2009;26:1535–1545. doi: 10.1089/neu.2008.0743. [PMC free article] [PubMed] [CrossRef[]

    133. Kurokawa H., Ito H., Terasaki M., Matsui H. Hyperthermia enhances photodynamic therapy by regulation of HCP1 and ABCG2 expressions via high level ROS generation. Sci. Rep. 2019;9:1638. doi: 10.1038/s41598-018-38460-z. [PMC free article] [PubMed] [CrossRef[]

    134. Svedung Wettervik T.M., Engquist H., Lenell S., Howells T., Hillered L., Rostami E., Lewén A., Enblad P. Systemic Hyperthermia in Traumatic Brain Injury—Relation to Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome. J. Neurosurg. Anesthesiol. 2021;33:329–336. doi: 10.1097/ANA.0000000000000695. [PubMed] [CrossRef[]

    135. Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting man. Aviat. Space Environ. Med. 1981;52:281–286. [PubMed[]

    136. Mickley G.A., Cobb B.L., Farrell S.T. Brain hyperthermia alters local cerebral glucose utilization: A comparison of hyperthermic agents. Int. J. Hyperth. 1997;13:99–114. doi: 10.3109/02656739709056434. [PubMed] [CrossRef[]

    137. Nunneley S.A., Martin C.C., Slauson J.W., Hearon C.M., Nickerson L.D.H., Mason P.A. Changes in regional cerebral metabolism during systemic hyperthermia in humans. J. Appl. Physiol. 2002;92:846–851. doi: 10.1152/japplphysiol.00072.2001. [PubMed] [CrossRef[]

    138. Spiotta A.M., Stiefel M.F., Heuer G.G., Bloom S., Maloney-Wilensky E., Yang W., Grady M.S., Le Roux P.D. Brain Hyperthermia After Traumatic Brain Injury Does Not Reduce Brain Oxygen. Neurosurgery. 2008;62:864–872. doi: 10.1227/01.neu.0000316900.63124.ce. [PubMed] [CrossRef[]

    139. Schumacker P.T., Rowland J., Saltz S., Nelson D.P., Wood L.D. Effects of hyperthermia and hypothermia on oxygen extraction by tissues during hypovolemia. J. Appl. Physiol. 1987;63:1246–1252. doi: 10.1152/jappl.1987.63.3.1246. [PubMed] [CrossRef[]

    140. Edvinsson L., MacKenzie E.T., McCulloch J. Cerebral Blood Flow and Metabolism. Raven Press; New York, NY, USA: 1993. []

    141. Crandall C.G., Gonzalez-Alonso J. Cardiovascular function in the heat-stressed human. Acta Physiol. 2010;199:407–423. doi: 10.1111/j.1748-1716.2010.02119.x. [PMC free article] [PubMed] [CrossRef[]

    142. Gross P.M., Harper A.M., Teasdale G.M. Interaction of histamine with noradrenergic constrictory mechanisms in cat cerebral arteries and veins. Can. J. Physiol. Pharmacol. 1983;61:756–763. doi: 10.1139/y83-117. [PubMed] [CrossRef[]

    143. Edvinsson L. Sympathetic control of cerebral circulation. Trends Neurosci. 1982;5:425–429. doi: 10.1016/0166-2236(82)90232-6. [CrossRef[]

    144. Watson P., Black K.E., Clark S.C., Maughan R.J. Exercise in the heat: Effect of fluid ingestion on blood-brain barrier permeability. Med. Sci. Sport. Exerc. 2006;38:2118–2124. doi: 10.1249/01.mss.0000235356.31932.0a. [PubMed] [CrossRef[]

    145. Watson P., Shirreffs S.M., Maughan R.J. Blood-brain barrier integrity may be threatened by exercise in a warm environment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R1689–R1694. doi: 10.1152/ajpregu.00676.2004. [PubMed] [CrossRef[]

    146. Walter E.J., Hanna-Jumma S., Carraretto M., Forni L. The pathophysiological basis and consequences of fever. Crit. Care. 2016;20:200. doi: 10.1186/s13054-016-1375-5. [PMC free article] [PubMed] [CrossRef[]

    147. Kilpatrick M.M., Lowry D.W., Firlik A.D., Yonas H., Marion D.W. Hyperthermia in the neurosurgical intensive care unit. Neurosurgery. 2000;47:850–856. doi: 10.1097/00006123-200010000-00011. [PubMed] [CrossRef[]

    148. Weng W.-J., Yang C., Huang X.-J., Zhang Y.-M., Liu J.-F., Yao J.-M., Zi Zhang Z., Wu X., Mei T., Zhang C., et al. Effects of brain temperature on the outcome of patients with traumatic brain injury: A prospective observational study. J. Neurotrauma. 2019;36:1168–1174. doi: 10.1089/neu.2018.5881. [PubMed] [CrossRef[]

    149. Holtzclaw B.J. The febrile response in critical care: State of the science. Heart Lung J. Crit. Care. 1992;21:482–501. [PubMed[]

    150. Bain A.R., Smith K.J., Lewis N.C., Foster G.E., Wildfong K.W., Willie C.K., Hartley G.L., Cheung S.S., Ainslie P.N. Regional changes in brain blood flow during severe passive hyperthermia: Effects of PaCO2 and extracranial blood flow. J. Appl. Physiol. 2013;115:653–659. doi: 10.1152/japplphysiol.00394.2013. [PubMed] [CrossRef[]

    151. Stocchetti N., Protti A., Lattuada M., Magnoni S., Longhi L., Ghisoni L., Egidi M., Zanier E. Impact of pyrexia on neurochemistry and cerebral oxygenation after acute brain injury. J. Neurol. Neurosurg. Psychiatry. 2005;76:1135–1139. doi: 10.1136/jnnp.2004.041269. [PMC free article] [PubMed] [CrossRef[]

    152. Rossi S., Zanier E.R., Mauri I., Columbo A., Stocchetti N. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J. Neurol. Neurosurg. Psychiatry. 2001;71:448–454. doi: 10.1136/jnnp.71.4.448. [PMC free article] [PubMed] [CrossRef[]

    153. Nyholm L., Howells T., Lewén A., Hillered L., Enblad P. The influence of hyperthermia on intracranial pressure, cerebral oximetry and cerebral metabolism in traumatic brain injury. Upsala J. Med. Sci. 2017;122:177–184. doi: 10.1080/03009734.2017.1319440. [PMC free article] [PubMed] [CrossRef[]

    154. Wang H., Wang B., Normoyle K.P., Jackson K., Spitler K., Sharrock M.F., Miller C.M., Best C., Llano D., Du R. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci. 2014;8:307. doi: 10.3389/fnins.2014.00307. [PMC free article] [PubMed] [CrossRef[]

    155. Le Roux P., Menon D.K., Citerio G., Vespa P., Bader M.K., Brophy G.M., Diringer M.N., Stocchetti N., Videtta W., Armonda R., et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocritical Care. 2014;21:1–26. doi: 10.1007/s12028-014-0041-5. [PMC free article] [PubMed] [CrossRef[]

    156. Rass V., Huber L., Ianosi B.-A., Kofler M., Lindner A., Picetti E., Ortolano F., Beer R., Rossi S., Smielewski P., et al. The Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Substudy. Ther. Hypothermia Temp. Manag. 2020;11:122–131. doi: 10.1089/ther.2020.0027. [PubMed] [CrossRef[]

    157. Kil H.Y., Zhang J., Piantadosi C.A. Brain Temperature Alters Hydroxyl Radical Production during Cerebral Ischemia/Reperfusion in Rats. J. Cereb. Blood Flow Metab. 1996;16:100–106. doi: 10.1097/00004647-199601000-00012. [PubMed] [CrossRef[]

    158. Dempsey R.J., Combs D.J., Maley M.E., Cowen D.E., Roy M.W., Donaldson D.L. Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery. 1987;21:177–181. doi: 10.1227/00006123-198708000-00007. [PubMed] [CrossRef[]

    159. Haba K., Ogawa N., Mizukawa K., Mori A. Time course of changes in lipid peroxidation, pre-and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res. 1991;540:116–122. doi: 10.1016/0006-8993(91)90497-J. [PubMed] [CrossRef[]

    160. Wells C.E. The Cerebral Circulation: The Clinical Significance of Current Concepts. Arch. Neurol. 1960;3:319–331. doi: 10.1001/archneur.1960.00450030097010. [PubMed] [CrossRef[]

    161. Choi H.A., Badjatia N., Mayer S.A. Hypothermia for acute brain injury—mechanisms and practical aspects. Nat. Rev. Neurol. 2012;8:214–222. doi: 10.1038/nrneurol.2012.21. [PubMed] [CrossRef[]

    162. Dietrich W.D., Halley M., Valdes I., Busto R. Interrelationships between increased vascular permeability and acute neuronal damage following temperature-controlled brain ischemia in rats. Acta Neuropathol. 1991;81:615–625. doi: 10.1007/BF00296371. [PubMed] [CrossRef[]

    163. Ginsberg M.D., Sternau L.L., Globus M.Y., Dietrich W.D., Busto R. Therapeutic modulation of brain temperature: Relevance to ischemic brain injury. Cerebrovasc. Brain Metab. Rev. 1992;4:189–225. [PubMed[]

    164. Kramer R.S., Sanders A.P., Lesage A.M., Woodhall B., Sealy W.C. The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J. Thorac. Cardiovasc. Surg. 1968;56:699–709. doi: 10.1016/S0022-5223(19)42797-9. [PubMed] [CrossRef[]

    165. Taft W.C., Yang K., Dixon C.E., Clifton G.L., Hayes R.L. Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J. Cereb. Blood Flow Metab. 1993;13:796–802. doi: 10.1038/jcbfm.1993.101. [PubMed] [CrossRef[]

    166. Dede S., Deger Y., Meral I. Effect of Short-term Hypothermia on Lipid Peroxidation and Antioxidant Enzyme Activity in Rats. J. Vet. Med. Ser. A. 2002;49:286–288. doi: 10.1046/j.1439-0442.2002.00449.x. [PubMed] [CrossRef[]

    167. Truettner J.S., Bramlett H.M., Dietrich W.D. Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J. Cereb. Blood Flow Metab. 2017;37:2952–2962. doi: 10.1177/0271678X16680003. [PMC free article] [PubMed] [CrossRef[]

    168. Erecinska M., Thoresen M., Silver I.A. Effects of Hypothermia on Energy Metabolism in Mammalian Central Nervous System. J. Cereb. Blood Flow Metab. 2003;23:513–530. doi: 10.1097/01.WCB.0000066287.21705.21. [PubMed] [CrossRef[]

    169. Walter B., Bauer R., Kuhnen G., Fritz H., Zwiener U. Coupling of cerebral blood flow and oxygen metabolism in infant pigs during selective brain hypothermia. J. Cereb. Blood Flow Metab. 2000;20:1215–1224. doi: 10.1097/00004647-200008000-00007. [PubMed] [CrossRef[]

    170. Jensen A., Garnier Y., Berger R. Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999;84:155–172. doi: 10.1016/S0301-2115(98)00325-X. [PubMed] [CrossRef[]

    171. Chihara H., Blood A.B., Hunter C.J., Power G.G. Effect of Mild Hypothermia and Hypoxia on Blood Flow and Oxygen Consumption of the Fetal Sheep Brain. Pediatr. Res. 2003;54:665–671. doi: 10.1203/01.PDR.0000084115.31416.17. [PubMed] [CrossRef[]

    172. Hashem M., Zhang Q., Wu Y., Johnson T.W., Dunn J.F. Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: A hypothermia validation study. NeuroImage. 2020;206:116315. doi: 10.1016/j.neuroimage.2019.116315. [PMC free article] [PubMed] [CrossRef[]

    173. Pichler G., Baumgartner S., Biermayr M., Dempsey E., Fuchs H., Goos T.G., Lista G., Lorenz L., Karpinski L., Mitra S., et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): An investigator-initiated, randomized, multi-center, multi-national, clinical trial on additional cerebral tissue oxygen saturation monitoring combined with defined treatment guidelines versus standard monitoring and treatment as usual in premature infants during immediate transition: Study protocol for a randomized controlled trial. Trials. 2019;20:178. doi: 10.1186/s13063-019-3258-y. [PMC free article] [PubMed] [CrossRef[]

    174. Laurikkala J., Aneman A., Peng A., Reinikainen M., Pham P., Jakkula P., Hästbacka J., Wilkman E., Loisa P., Toppila J., et al. Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: A post-hoc analysis of the COMACARE trial. Crit. Care. 2021;25:350. doi: 10.1186/s13054-021-03764-6. [PMC free article] [PubMed] [CrossRef[]

    175. Clifton G.L., Allen S., Barrodale P., Plenger P., Berry J., Koch S., Fletcher J., Hayes R.L., Choi S.C. A Phase II Study of Moderate Hypothermia in Severe Brain Injury. J. Neurotrauma. 1993;10:263–271. doi: 10.1089/neu.1993.10.263. [PubMed] [CrossRef[]

    176. Rösli D., Schnüriger B., Candinas D., Haltmeier T. The Impact of Accidental Hypothermia on Mortality in Trauma Patients Overall and Patients with Traumatic Brain Injury Specifically: A Systematic Review and Meta-Analysis. World J. Surg. 2020;44:4106–4117. doi: 10.1007/s00268-020-05750-5. [PMC free article] [PubMed] [CrossRef[]

    177. Wu X., Tao Y., Marsons L., Dee P., Yu D., Guan Y., Zhou X. The effectiveness of early prophylactic hypothermia in adult patients with traumatic brain injury: A systematic review and meta-analysis. Aust. Crit. Care. 2021;34:83–91. doi: 10.1016/j.aucc.2020.05.005. [PubMed] [CrossRef[]

    178. Tokutomi T., Morimoto K., Miyagi T., Yamaguchi S., Ishikawa K., Shigemori M. Optimal Temperature For The Management Of Severe Traumatic Brain Injury: Effect Of Hypothermia On Intracranial Pressure, Systemic And Intracranial Hemodynamics, And Metabolism. Neurosurgery. 2007;61((Suppl. 1)):102–112. doi: 10.1227/01.neu.0000279221.38257.1a. [PubMed] [CrossRef[]

    179. Ghosh A., Highton D., Kolyva C., Tachtsidis I., Elwell C.E., Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J. Cereb. Blood Flow Metab. 2017;37:2910–2920. doi: 10.1177/0271678X16679171. [PMC free article] [PubMed] [CrossRef[]

    180. Yang D., Ma L., Wang P., Yang D., Zhang Y., Zhao X., Lv J., Zhang J., Zhang Z., Gao F. Normobaric oxygen inhibits AQP4 and NHE1 expression in experimental focal ischemic stroke. Int. J. Mol. Med. 2019;43:1193–1202. doi: 10.3892/ijmm.2018.4037. [PMC free article] [PubMed] [CrossRef[]

    181. Liang J., Qi Z., Liu W., Wang P., Shi W., Dong W., Ji X., Luo Y., Liu K.J. Normobaric Hyperoxia Slows Blood–Brain Barrier Damage and Expands the Therapeutic Time Window for Tissue-Type Plasminogen Activator Treatment in Cerebral Ischemia. Stroke. 2015;46:1344–1351. doi: 10.1161/STROKEAHA.114.008599. [PMC free article] [PubMed] [CrossRef[]

    182. Braswell C., Crowe D.T. Hyperbaric oxygen therapy. Compend. Contin. Educ. Vet. 2012;34:E1–E6. [PubMed[]

    183. Sanchez E.C. Mechanisms of action of hyperbaric oxygenation in stroke: A review. Crit. Care Nurs. Q. 2013;36:290–298. doi: 10.1097/CNQ.0b013e318294e9e3. [PubMed] [CrossRef[]

    184. Liang F., Sun L., Yang J., Liu X.-H., Zhang J., Zhu W.-Q., Yang L., Nan D. The effect of different atmosphere absolute hyperbaric oxygen on the expression of extracellular histones after traumatic brain injury in rats. Cell Stress Chaperones. 2020;25:1013–1024. doi: 10.1007/s12192-020-01137-6. [PMC free article] [PubMed] [CrossRef[]

    185. Xu Z., Huang Y., Mao P., Zhang J., Li Y. Sepsis and ARDS: The dark side of histones. Mediat. Inflamm. 2015;2015:205054. doi: 10.1155/2015/205054. [PMC free article] [PubMed] [CrossRef[]

    186. Palzur E., Vlodavsky E., Mulla H., Arieli R., Feinsod M., Soustiel J.F. Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: An animal model of brain contusion. J. Neurotrauma. 2004;21:41–48. doi: 10.1089/089771504772695931. [PubMed] [CrossRef[]

    187. Palzur E., Zaaroor M., Vlodavsky E., Milman F., Soustiel J.F. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res. 2008;1221:126–133. doi: 10.1016/j.brainres.2008.04.078. [PubMed] [CrossRef[]

    188. Rockswold G.L., Ford S.E., Anderson D.C., Bergman T.A., Sherman R.E. Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J. Neurosurg. 1992;76:929–934. doi: 10.3171/jns.1992.76.6.0929. [PubMed] [CrossRef[]

    189. Rockswold S.B., Rockswold G.L., Zaun D.A., Liu J. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J. Neurosurg. 2013;118:1317–1328. doi: 10.3171/2013.2.JNS121468. [PubMed] [CrossRef[]

    190. Harch P.G., Andrews S.R., Rowe C.J., Lischka J.R., Townsend M.H., Yu Q., E Mercante D. Hyperbaric oxygen therapy for mild traumatic brain injury persistent postconcussion syndrome: A randomized controlled trial. Med. Gas Res. 2020;10:8–20. doi: 10.4103/2045-9912.279978. [PMC free article] [PubMed] [CrossRef[]

    191. Amir H., Shai E. The Hyperoxic-Hypoxic Paradox. Biomolecules. 2020;10:958. doi: 10.3390/biom10060958. [PMC free article] [PubMed] [CrossRef[]

    192. Annoni F., Peluso L., Bogossian E.G., Creteur J., Zanier E., Taccone F. Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful? Cells. 2021;10:1714. doi: 10.3390/cells10071714. [PMC free article] [PubMed] [CrossRef[]

    193. Phillis J.W., Song D., Guyot L.L., O’Regan M.H. Lactate reduces amino acid release and fuels recovery of function in the ischemic brain. Neurosci. Lett. 1999;272:195–198. doi: 10.1016/S0304-3940(99)00584-4. [PubMed] [CrossRef[]

    194. Berthet C., Lei H., Thevenet J., Gruetter R., Magistretti P.J., Hirt L. Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 2009;29:1780–1789. doi: 10.1038/jcbfm.2009.97. [PubMed] [CrossRef[]

    195. Horn T., Klein J. Neuroprotective effects of lactate in brain ischemia: Dependence on anesthetic drugs. Neurochem. Int. 2013;62:251–257. doi: 10.1016/j.neuint.2012.12.017. [PubMed] [CrossRef[]

    196. Berthet C., Castillo X., Magistretti P.J., Hirt L. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: Extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc. Dis. 2012;34:329–335. doi: 10.1159/000343657. [PubMed] [CrossRef[]

    197. Ichai C., Armando G., Orban J.-C., Berthier F., Rami L., Samat-Long C., Grimaud D., Leverve X. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensiv. Care Med. 2009;35:471–479. doi: 10.1007/s00134-008-1283-5. [PubMed] [CrossRef[]

    198. Bouzat P., Sala N., Suys T., Zerlauth J.-B., Marques-Vidal P., Feihl F., Bloch J., Messerer M., Levivier M., Meuli R., et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensiv. Care Med. 2014;40:412–421. doi: 10.1007/s00134-013-3203-6. [PubMed] [CrossRef[]

    199. Krep H., Breil M., Sinn D., Hagendorff A., Hoeft A., Fischer M. Effects of hypertonic versus isotonic infusion therapy on regional cerebral blood flow after experimental cardiac arrest cardiopulmonary resuscitation in pigs. Resuscitation. 2004;63:73–83. doi: 10.1016/j.resuscitation.2004.03.023. [PubMed] [CrossRef[]

    200. Ros J., Pecinska N., Alessandri B., Landolt H., Fillenz M. Lactate reduces glutamate-induced neurotoxicity in rat cortex. J. Neurosci. Res. 2001;66:790–794. doi: 10.1002/jnr.10043. [PubMed] [CrossRef[]

    201. Sørensen A.T., Ledri M., Melis M., Nikitidou Ledri L., Andersson M., Kokaia M. Altered Chloride Homeo-stasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neu-rons. eNeuro. 2018;4 doi: 10.1523/ENEURO.0172-17.2017. [PMC free article] [PubMed] [CrossRef[]

     

     

    Published on 5 May 2024