Quantity of assimilated oxygen on 100 gr. of cerebral tissue
The
quantity of consumed oxygen per 100 g brain tissue is
associated with a complex cause, involved in the redox processes, lipid
peroxidation reactions, and with a state of thyroid blood circulation
regulation. Thyroid blood circulation determines the transportation of oxygen
and its consumption by inner organs due to the activation of thyroid hormones
T3 and T4. This index depends on the activation or inactivation of organ oxygen
consumption. This value averages 2.5-3.5 ml/100 g tissue for adults and 3.5-6
ml/100 g tissue for children.
The weight of the brain is only 2% of the human body, but
cerebral tissue uses 25% of the glucose and about 20% of the oxygen delivered
to function normally [14]. Oxygen
consumption is 3.5 mL of oxygen/100 g tissue/1 min; therefore, the regulation
of blood flow and delivery of oxygen to cerebral tissue is crucial for brain
function [15]. Importantly,
75–80% of the energy consumed by neurons is used at the synapses to restore the
neuronal membrane potentials lost during depolarization [16]. The continuous
supply of oxygen to the brain occurs via arterial blood and is transported to
brain tissue by diffusion. Diffusion is linked to the oxygen conductivity of
cerebral tissue, determined by the geometry of capillaries (distance and area)
and the metabolism of tissue (oxygen gradient from capillary to tissue) [17]. Extraction of
oxygen is inversely proportional to blood flow (when metabolism is constant)
and directly proportional to metabolism (when flow is constant) and the area
between tissue and capillaries. Thus, a reduction in oxygen delivery increases
oxygen extraction. It should be noted that when cerebral blood flow (CBF) is
reduced by 50–60%, the consequent elevation of oxygen extraction is
insufficient to maintain proper cerebral oxygenation and a constant cerebral
metabolic rate of oxygen (CMRO2) [18]. Thus, cerebral
oxygen delivery is determined by blood oxygen content and cerebral blood flow.
In physiological conditions, total blood flow in the brain is constant because
of the contribution of the large arteries to vascular resistance, as well as the
impact of the parenchymal arterioles on considerable basal tone.
Autoregulation of
cerebral blood flow is the mechanism that enables the brain to maintain
relatively constant blood flow through changes in perfusion pressure [19]. In a
normotensive, physiological state, the ensuing cerebral perfusion pressure
(CPP) is in the range of 60 to 160 mmHg, and CBF is maintained at 50 mL per 100
g of brain tissue per minute. Outside of this range, autoregulation is lost,
and CBF starts to be dependent on MAP in a linear mode [20]. A drop of CPP
below the lower limit of 50 mmHg results in cerebral ischemia [21]. This reduction of
CBF is compensated for by elevated oxygen extraction from the blood.
The
individualization of care by targeting optimal, near to cerebral autoregulation
(CA)-guided CPP is connected with improved outcomes in TBI patients [22]. It is worth
remembering that combined brain tissue oxygen with ICP/CCP-guided therapy
strongly ameliorates favorable long-term outcomes [23]. In addition, in a
recent meta-analysis, Xie et al. documented that this combined therapy did not
present any effects on mortality, ICP/CPP and length of stay of patients after
TBI [23].
Over a physiological
range of partial oxygen pressure (PaO2) (75–100 mmHg; 7–13.33 kPa), PaO2 has little effect on global CBF as long as it
does not fall below 50 mmHg (6.67 kPa). This is because CBF is connected to the
arterial content of oxygen rather than PaO2. The form of the hemoglobin–oxygen dissociation curve
indicates that the arterial content of oxygen is comparatively stable over the
discussed PaO2 range
[24].
The primary gradient
determining the oxygen level in the brain may be enhanced by a
gradient-independent mechanism of cerebral vessel tone changes and increases in
CBF during functional neural activation (neurovascular coupling) [25,26]. The main role of
this mechanism is to transport higher levels of oxygen in advance of the
elevated consumption during neuronal activation [27].
Impairment of cerebral perfusion and metabolism following brain
injury has been documented repeatedly. Unfavorable outcomes after brain injury
are connected with hypoperfusion and decreased glucose metabolism and CMRO2 [28]. Recent data have
documented a connection between CMRO2 and
Glasgow Coma Score (GCS) after traumatic brain injury [29,30,31,32]. Soustiel et al.
demonstrated that in TBI patients, CBF is somewhat reduced during the first 24
h, and greater hypovolemia is observed following poor outcomes. Importantly, a
decrease in CMRO2 and
the cerebral rate of glucose metabolism (CMRG) correlates with worse outcomes [32].
Oxygen is transported to the cerebral cells by blood diffusion
from the capillary to the mitochondria, until it is consumed in the
mitochondria as part of oxidative metabolism. CMRO2 is the rate of consumption and energy homeostasis
in the brain and in healthy, awake people, averages 3.3 mL/100 g/min [33]. It is related to
CBF. Under elevated metabolic demand, the cerebral vasculature dilates to
supply an appropriate increase in CBF.
Importantly, with
elevated neural activity, CMRO2 also
rises [34,35]. In a normal,
unstimulated brain, energy is mostly provided by glucose oxidation.
Nevertheless, the metabolic rates of the oxygen-to-glucose ratio, CMRO2/CMR(glc), called the
oxygen-to-glucose index (OGI), increase during activation and diverge from the
textbook value of 6. In addition, the levels of lactates in the brain increase
during sensory (e.g., visual) stimulation [34]. This oxidative
metabolism yields more energy as compared to glycolysis, but precise
measurements of this process are limited [36]. Mitochondria
present a high metabolic activity and a critical role in aerobic energy
production, and their main function is the production of adenosine triphosphate
(ATP) through oxidative phosphorylation.
Mitochondrial
dysfunction is a major factor in the occurrence of cell damage. Successful
resuscitation during ischemia/reperfusion demands the reestablishment of
aerobic metabolism by reperfusion of oxygenated blood. Mitochondria play a
fundamental role as effectors of reperfusion injury. Damage to the organelle
impairs oxidative phosphorylation and elimination of cytochrome c in the
cytosol. The main mechanisms are oxidative stress and Ca2+ overload
[36].
Disturbances in oxygen delivery stop electron flow and interrupt
the generation of the “proton motive force” important in ATP production
mentioned above. Of course, cells may produce ATP anaerobically by glycolysis.
However, this process is less effective, insufficient for metabolic demands,
and the final products are lactates.
The brain is
one of the most sensitive organs to hypoxia, reoxygenation and oxidative
stress. As mentioned above, the brain has very high metabolic oxygen
requirements, and it is highly susceptible to hypoxic damage (Table
1).
Table 1
Potentially effect of disorders in oxygen delivery to the brain
on selected pathways and factors. Up arrows indicate the direction of the
mechanism that may be intensified to varying degrees, depending on the
causative factor. The number of arrows defines the intensity of the processes.
Clinical implications of hypoxia:
Clinical implications of hyperoxia:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698645/
1. Semenza G.L. Life with Oxygen. Science. 2007;318:62–64.
doi: 10.1126/science.1147949. [PubMed] [CrossRef] [Google Scholar]
2. Özugur S., Kunz L., Straka H. Relationship between
oxygen consumption and neuronal activity in a defined neural circuit. BMC
Biol. 2020;18:76.
doi: 10.1186/s12915-020-00811-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. Roy C.S., Sherrington C.S. On the Regulation of the
Blood-supply of the Brain. J. Physiol. 1890;11:85–158.
doi: 10.1113/jphysiol.1890.sp000321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Maas A.I.R., Menon D.K., Adelson P.D., Andelic N.,
Bell M.J., Belli A., Bragge P., Brazinova A., Büki A., Chesnut R.M., et al.
Traumatic brain injury: Integrated approaches to improve prevention, clinical
care, and research. Lancet Neurol. 2017;16:987–1048.
doi: 10.1016/S1474-4422(17)30371-X. [PubMed] [CrossRef] [Google Scholar]
5. Chesnut R.M., Marshall L.F., Klauber M.R., Blunt
B.A., Baldwin N., Eisenberg H.M., Jane J.A., Marmarou A., Foulkes M.A. The Role
of Secondary Brain Injury in Determining Outcome from Severe Head Injury. J.
Trauma Inj. Infect. Crit. Care. 1993;34:216–222.
doi: 10.1097/00005373-199302000-00006. [PubMed] [CrossRef] [Google Scholar]
6. Volpi P.C., Robba C., Rota M., Vargiolu A., Citerio
G. Trajectories of early secondary insults correlate to outcomes of traumatic
brain injury: Results from a large, single centre, observational study. BMC
Emerg. Med. 2018;18:52.
doi: 10.1186/s12873-018-0197-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Maloney-Wilensky E., Gracias V., Itkin A., Hoffman
K., Bloom S., Yang W., Christian S., Leroux P.D. Brain tissue oxygen and
outcome after severe traumatic brain injury: A systematic review. Crit.
Care Med. 2009;37:2057–2063.
doi: 10.1097/CCM.0b013e3181a009f8. [PubMed] [CrossRef] [Google Scholar]
8. Jeremitsky E., Omert L., Dunham C.M., Protetch J.,
Rodriguez A. Harbingers of Poor Outcome the Day after Severe Brain Injury:
Hypothermia, Hypoxia, and Hypoperfusion. J. Trauma Inj. Infect. Crit.
Care. 2003;54:312–319.
doi: 10.1097/01.TA.0000037876.37236.D6. [PubMed] [CrossRef] [Google Scholar]
9. Bogossian E.G., Diaferia D., Djangang N.N., Menozzi
M., Vincent J.-L., Talamonti M., Dewitte O., Peluso L., Barrit S., Al Barajraji
M., et al. Brain tissue oxygenation guided therapy and outcome in non-traumatic
subarachnoid hemorrhage. Sci. Rep. 2021;11:16235.
doi: 10.1038/s41598-021-95602-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
10. Martini R.P., Deem S., Treggiari M.M. Targeting
Brain Tissue Oxygenation in Traumatic Brain Injury. Respir.
Care. 2012;58:162–172.
doi: 10.4187/respcare.01942. [PubMed] [CrossRef] [Google Scholar]
11. Chesnut R., Aguilera S., Buki A., Bulger E.,
Citerio G., Cooper D.J., Arrastia R.D., Diringer M., Figaji A., Gao G., et al.
A management algorithm for adult patients with both brain oxygen and
intracranial pressure monitoring: The Seattle International Severe Traumatic
Brain Injury Consensus Conference (SIBICC) Intensiv. Care Med. 2020;46:919–929.
doi: 10.1007/s00134-019-05900-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Rakhit S., Nordness M.F., Lombardo S.R., Cook M.,
Smith L., Patel M.B. Management and Challenges of Severe Traumatic Brain
Injury. Semin. Respir. Crit. Care Med. 2021;42:127–144.
doi: 10.1055/s-0040-1716493. [PubMed] [CrossRef] [Google Scholar]
13. Sekhon M.S., Gooderham P., Menon D.K., Brasher
P.M.A., Foster D., Cardim D., Czosnyka M., Smielewski P., Gupta A.K., Ainslie
P.N., et al. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in
Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest. Crit.
Care Med. 2019;47:960–969.
doi: 10.1097/CCM.0000000000003745. [PubMed] [CrossRef] [Google Scholar]
14. Hyder F., Rothman D.L., Bennett M.R. Cortical
energy demands of signaling and nonsignaling components in brain are conserved
across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA. 2013;110:3549–3554.
doi: 10.1073/pnas.1214912110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
15. Rink C., Khanna S. Significance of Brain Tissue
Oxygenation and the Arachidonic Acid Cascade in Stroke. Antioxid.
Redox Signal. 2011;14:1889–1903.
doi: 10.1089/ars.2010.3474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Harris J.J., Jolivet R., Attwell D. Synaptic Energy
Use and Supply. Neuron. 2012;75:762–777.
doi: 10.1016/j.neuron.2012.08.019. [PubMed] [CrossRef] [Google Scholar]
17. Gjedde A. Advances
in Experimental Medicine and Biology. Springer;
Boston, MA, USA: 2005. The pathways of oxygen in brain. I. Delivery and
metabolism of oxygen; p. 566. [PubMed] [Google Scholar]
18. Bain A.R., Morrison S., Ainslie P.N. Cerebral
oxygenation and hyperthermia. Front. Physiol. 2014;5:92.
doi: 10.3389/fphys.2014.00092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Paulson O.B., Strandgaard S., Edvinsson L. Cerebral
autoregulation. Cerebrovasc. Brain Metab. Rev. 1990;2:161–192. [PubMed] [Google Scholar]
20. Cipolla M.J., Osol G. Vascular Smooth Muscle Actin
Cytoskeleton in Cerebral Artery Forced Dilatation. Stroke. 1998;29:1223–1228.
doi: 10.1161/01.STR.29.6.1223. [PubMed] [CrossRef] [Google Scholar]
21. Baron J.-C. Perfusion Thresholds in Human Cerebral
Ischemia: Historical Perspective and Therapeutic Implications. Cerebrovasc.
Dis. 2001;11((Suppl.
1)):2–8. doi: 10.1159/000049119. [PubMed] [CrossRef] [Google Scholar]
22. Tas J., Beqiri E., van Kaam R.C., Czosnyka M.,
Donnelly J., Haeren R.H., van der Horst I.C., Hutchinson P.J., van Kuijk S.M.,
Liberti A.L., et al. Targeting Autoregulation-Guided Cerebral Perfusion
Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized
Controlled Clinical Trial. J. Neurotrauma. 2021;38:2790–2800.
doi: 10.1089/neu.2021.0197. [PubMed] [CrossRef] [Google Scholar]
23. Xie Q., Wu H.-B., Yan Y.-F., Liu M., Wang E.-S.
Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with
Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy and
Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy in Traumatic
Brain Injury: A Meta-Analysis. World Neurosurg. 2017;100:118–127.
doi: 10.1016/j.wneu.2016.12.097. [PubMed] [CrossRef] [Google Scholar]
24. McDowall D.G. Interrelationships between blood
oxygen tensions and cerebral blood flow. Oxyg. Meas. Blood Tissues. 1966;4:205–219. [PubMed] [Google Scholar]
25. Attwell D., Buchan A.M., Charpak S., Lauritzen
M.J., MacVicar B.A., Newman E.A. Glial and neuronal control of brain blood
flow. Nature. 2010;468:232–243.
doi: 10.1038/nature09613. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Muoio V., Persson P.B., Sendeski M.M. The
neurovascular unit—concept review. Acta Physiol. 2014;210:790–798.
doi: 10.1111/apha.12250. [PubMed] [CrossRef] [Google Scholar]
27. Sokoloff L. Energetics of Functional Activation in
Neural Tissues. Neurochem. Res. 1999;24:321–329.
doi: 10.1023/A:1022534709672. [PubMed] [CrossRef] [Google Scholar]
28. Hattori N., Huang S.-C., Wu H.-M., Yeh E., Glenn
T.C., Vespa P.M., McArthur D., E Phelps M., A Hovda D., Bergsneider M.
Correlation of regional metabolic rates of glucose with glasgow coma scale
after traumatic brain injury. J. Nucl. Med. 2003;44:1709. [PubMed] [Google Scholar]
29. Bergsneider M., Hovda D.A., Lee S.M., Kelly D.F.,
McArthur D., Vespa P.M., Lee J.H., Huang S.-C., Martin N., Phelps M.E., et al.
Dissociation of Cerebral Glucose Metabolism and Level of Consciousness During
the Period of Metabolic Depression Following Human Traumatic Brain Injury. J.
Neurotrauma. 2000;17:389–401.
doi: 10.1089/neu.2000.17.389. [PubMed] [CrossRef] [Google Scholar]
30. Bergsneider M., Hovda D.A., Shalmon E., Kelly D.F.,
Vespa P.M., Martin N.A., Phelps M.E., McArthur D.L., Caron M.J., Kraus J.F., et
al. Cerebral hyperglycolysis following severe traumatic brain injury in humans:
A positron emission tomography study. J. Neurosurg. 1997;86:241–251.
doi: 10.3171/jns.1997.86.2.0241. [PubMed] [CrossRef] [Google Scholar]
31. Obrist W.D., Langfitt T.W., Jaggi J.L., Cruz J.,
Gennarelli T.A. Cerebral blood flow and metabolism in comatose patients with
acute head injury: Relationship to intracranial hypertension. J.
Neurosurg. 1984;61:241–253.
doi: 10.3171/jns.1984.61.2.0241. [PubMed] [CrossRef] [Google Scholar]
32. Soustiel J.F., Glenn T.C., Shik V., Boscardin J.,
Mahamid E., Zaaroor M. Monitoring of Cerebral Blood Flow and Metabolism in
Traumatic Brain Injury. J. Neurotrauma. 2005;22:955–965.
doi: 10.1089/neu.2005.22.955. [PubMed] [CrossRef] [Google Scholar]
33. Cold G.E. Cerebral Metabolic Rate of Oxygen (CMRO2)
in the Acute Phase of Brain Injury. Acta Anaesthesiol. Scand. 1978;22:249–256.
doi: 10.1111/j.1399-6576.1978.tb01299.x. [PubMed] [CrossRef] [Google Scholar]
34. Shulman R.G., Hyder F., Rothman D.L. Lactate efflux
and the neuroenergetic basis of brain function. NMR Biomed. 2001;14:389–396.
doi: 10.1002/nbm.741. [PubMed] [CrossRef] [Google Scholar]
35. Thompson Jeffrey K., Peterson Matthew R., Freeman
Ralph D. Single-Neuron Activity and Tissue Oxygenation in the Cerebral Cortex. Science. 2003;299:1070–1072.
doi: 10.1126/science.1079220. [PubMed] [CrossRef] [Google Scholar]
36. Hyder F., Kida I., Behar K.L., Kennan R.P.,
Maciejewski P.K., Rothman D.L. Quantitative functional imaging of the brain:
Towards mapping neuronal activity by BOLD fMRI. NMR Biomed. 2001;14:413–431.
doi: 10.1002/nbm.733. [PubMed] [CrossRef] [Google Scholar]
37. Hochachka P.W., Buck L.T., Doll C.J., Land S.C.
Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue
mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA. 1996;93:9493–9498.
doi: 10.1073/pnas.93.18.9493. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. Boyer P.D. The Atp Synthase—A Splendid Molecular
Machine. Annu. Rev. Biochem. 1997;66:717–749.
doi: 10.1146/annurev.biochem.66.1.717. [PubMed] [CrossRef] [Google Scholar]
39. Wu I.C., Ohsawa I., Fuku N., Tanaka M. Metabolic
analysis of 13C-labeled pyruvate for noninvasive assessment of mitochondrial
function. Ann. N. Y. Acad. Sci. 2010;1201:111–120.
doi: 10.1111/j.1749-6632.2010.05636.x. [PubMed] [CrossRef] [Google Scholar]
40. Wellen K.E., Thompson C.B. Cellular metabolic
stress: Considering how cells respond to nutrient excess. Mol.
Cell. 2010;40:323–332.
doi: 10.1016/j.molcel.2010.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Sas K., Robotka H., Toldi J., Vécsei L.
Mitochondria, metabolic disturbances, oxidative stress and the kynurenine
system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007;257:221–239.
doi: 10.1016/j.jns.2007.01.033. [PubMed] [CrossRef] [Google Scholar]
42. Diringer M.N., Yundt K., Videen T.O., Adams R.E.,
Zazulia A.R., Deibert E., Aiyagari V., Dacey R.G., Grubb R.L., Powers W.J. No
reduction in cerebral metabolism as a result of early moderate hyperventilation
following severe traumatic brain injury. J. Neurosurg. 2000;92:7–13.
doi: 10.3171/jns.2000.92.1.0007. [PubMed] [CrossRef] [Google Scholar]
43. Zhang Z., Guo Q., Wang E. Hyperventilation in
neurological patients: From physiology to outcome evidence. Curr.
Opin. Anesthesiol. 2019;32:568–573.
doi: 10.1097/ACO.0000000000000764. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Mas A., Saura P., Joseph D., Blanch L., Baigorri
F., Artigas A., Fernandez R. Effect of acute moderate changes in PaCO2 on
global hemodynamics and gastric perfusion. Crit. Care Med. 2000;28:360–365.
doi: 10.1097/00003246-200002000-00012. [PubMed] [CrossRef] [Google Scholar]
45. Howarth C., Sutherland B.A., Choi H.B., Martin C.,
Lind B.L., Khennouf L., LeDue J.M., Pakan J.M., Ko R.W., Ellis-Davies G., et
al. A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain. J.
Neurosci. 2017;37:2403–2414.
doi: 10.1523/JNEUROSCI.0005-16.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Carney N., Totten A.M., O’Reilly C., Ullman J.S.,
Hawryluk G.W., Bell M.J., Bratton S.L., Chesnut R., Harris O.A., Kissoon N., et
al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth
Edition. Neurosurgery. 2017;80:6–15.
doi: 10.1227/NEU.0000000000001432. [PubMed] [CrossRef] [Google Scholar]
47. Oddo M., Bösel J. Monitoring of brain and systemic
oxygenation in neurocritical care patients. Neurocritical Care. 2014;21:103–120.
doi: 10.1007/s12028-014-0024-6. [PubMed] [CrossRef] [Google Scholar]
48. Chen R., Lai U.H., Zhu L., Singh A., Ahmed M.,
Forsyth N.R. Reactive Oxygen Species Formation in the Brain at Different Oxygen
Levels: The Role of Hypoxia Inducible Factors. Front. Cell Dev. Biol. 2018;6:132.
doi: 10.3389/fcell.2018.00132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Banasiak K.J., Xia Y., Haddad G.G. Mechanisms
underlying hypoxia-induced neuronal apoptosis. Prog. Neurobiol. 2000;62:215–249.
doi: 10.1016/S0301-0082(00)00011-3. [PubMed] [CrossRef] [Google Scholar]
50. Chang E., Hornick K., Fritz K.I., Mishra O.P.,
Delivoria-Papadopoulos M. Effect of Hyperoxia on Cortical Neuronal Nuclear
Function and Programmed Cell Death Mechanisms. Neurochem. Res. 2007;32:1142–1149.
doi: 10.1007/s11064-007-9282-4. [PubMed] [CrossRef] [Google Scholar]
51. Serocki M., Bartoszewska S., Janaszak-Jasiecka A.,
Ochocka R.J., Collawn J.F., Bartoszewski R. miRNAs regulate the HIF switch
during hypoxia: A novel therapeutic target. Angiogenesis. 2018;21:183–202.
doi: 10.1007/s10456-018-9600-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Koh M.Y., Lemos R., Liu X., Powis G. The
hypoxia-associated factor switches cells from HIF-1α-to HIF-2α-dependent
signaling promoting stem cell characteristics, aggressive tumor growth and
invasion. Cancer Res. 2011;71:4015–4027.
doi: 10.1158/0008-5472.CAN-10-4142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Masamoto K., Tanishita K. Oxygen Transport in Brain
Tissue. J. Biomech. Eng. 2009;131:074002.
doi: 10.1115/1.3184694. [PubMed] [CrossRef] [Google Scholar]
54. Taguchi H., Heistad D.D., Kitazono T., Faraci F.M.
ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during
hypoxia. Circ. Res. 1994;74:1005–1008.
doi: 10.1161/01.RES.74.5.1005. [PubMed] [CrossRef] [Google Scholar]
55. Johnston A.J., Steiner L.A., Gupta A.K., Menon D.K.
Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br.
J. Anaesth. 2003;90:774–786.
doi: 10.1093/bja/aeg104. [PubMed] [CrossRef] [Google Scholar]
56. Xu K., LaManna J.C. Chronic hypoxia and the
cerebral circulation. J. Appl. Physiol. 2006;100:725–730.
doi: 10.1152/japplphysiol.00940.2005. [PubMed] [CrossRef] [Google Scholar]
57. Boero J.A., Ascher J., Arregui A., Rovainen C.,
Woolsey T.A. Increased brain capillaries in chronic hypoxia. J.
Appl. Physiol. 1999;86:1211–1219.
doi: 10.1152/jappl.1999.86.4.1211. [PubMed] [CrossRef] [Google Scholar]
58. Torres-Cuevas I., Parra-Llorca A., Sánchez-Illana
Á., Nuñez-Ramiro A., Kuligowski J., Cháfer-Pericás C., Cernada M., Escobar J.,
Vento M. Oxygen and oxidative stress in the perinatal period. Redox
Biol. 2017;12:674–681.
doi: 10.1016/j.redox.2017.03.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
59. Rocha-Ferreira E., Hristova M. Plasticity in the
Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast. 2016;2016:4901014.
doi: 10.1155/2016/4901014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60. Sekhon M.S., Ainslie P.N., Griesdale D.E. Clinical
pathophysiology of hypoxic ischemic brain injury after cardiac arrest: A
“two-hit” model. Crit. Care. 2017;21:90.
doi: 10.1186/s13054-017-1670-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Chen H., Yoshioka H., Kim G.S., Jung J.E., Okami
N., Sakata H., Maier C.M., Narasimhan P., Goeders C.E., Chan P.H. Oxidative
Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential
Molecular Targets for Neuroprotection. Antioxid. Redox Signal. 2011;14:1505–1517.
doi: 10.1089/ars.2010.3576. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Coimbra-Costa D., Alva N., Duran M., Carbonell T.,
Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and
reoxygenation in rat brain. Redox Biol. 2017;12:216–225.
doi: 10.1016/j.redox.2017.02.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63. Peña F., Ramirez J.-M. Hypoxia-induced changes in
neuronal network properties. Mol. Neurobiol. 2005;32:251–283.
doi: 10.1385/MN:32:3:251. [PubMed] [CrossRef] [Google Scholar]
64. Majmundar A.J., Wong W.J., Simon M.C.
Hypoxia-inducible factors and the response to hypoxic stress. Mol.
Cell. 2010;40:294–309.
doi: 10.1016/j.molcel.2010.09.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
65. Dengler V.L., Galbraith M.D., Espinosa J.M.
Transcriptional regulation by hypoxia inducible factors. Crit.
Rev. Biochem. Mol. Biol. 2014;49:1–15.
doi: 10.3109/10409238.2013.838205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
66. Chávez J.C., Agani F., Pichiule P., LaManna J.C.
Expression of hypoxia-inducible factor-1α in the brain of rats during chronic
hypoxia. J. Appl. Physiol. 2000;89:1937–1942.
doi: 10.1152/jappl.2000.89.5.1937. [PubMed] [CrossRef] [Google Scholar]
67. Lukyanova L.D., Kirova Y.I. Mitochondria-controlled
signaling mechanisms of brain protection in hypoxia. Front.
Neurosci. 2015;9:320.
doi: 10.3389/fnins.2015.00320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
68. Brix B., Mesters J.R., Pellerin L., Jöhren O.
Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes
via HIF-1α-mediated target gene activation. J. Neurosci. 2012;32:9727–9735.
doi: 10.1523/JNEUROSCI.0879-12.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. Koh M.Y., Powis G. Passing the baton: The HIF
switch. Trends Biochem. Sci. 2012;37:364–372.
doi: 10.1016/j.tibs.2012.06.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Luo W., Zhong J., Chang R., Hu H., Pandey A.,
Semenza G.L. Hsp70 and CHIP Selectively Mediate Ubiquitination and Degradation
of Hypoxia-inducible Factor (HIF)-1α but Not HIF-2α 2. J.
Biol. Chem. 2010;285:3651–3663.
doi: 10.1074/jbc.M109.068577. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
71. Liu Y.V., Semenza G.L. RACK1 vs. HSP90: Competition
for HIF-1α degradation vs. stabilization. Cell Cycle. 2007;6:656–659.
doi: 10.4161/cc.6.6.3981. [PubMed] [CrossRef] [Google Scholar]
72. Liu Y.V., Baek J.H., Zhang H., Diez R., Cole R.N.,
Semenza G.L. RACK1 competes with HSP90 for binding to HIF-1α and is required
for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α Mol.
Cell. 2007;25:207–217.
doi: 10.1016/j.molcel.2007.01.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Ravi R., Mookerjee B., Bhujwalla Z.M., Sutter C.H.,
Artemov D., Zeng Q., Dillehay L.E., Madan A., Semenza G.L., Bedi A. Regulation
of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α Genes
Dev. 2000;14:34–44.
doi: 10.1101/gad.14.1.34. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Bhattacharya R., SenBanerjee S., Lin Z., Mir S.,
Hamik A., Wang P., Mukherjee P., Mukhopadhyay D., Jain M.K. Inhibition of
Vascular Permeability Factor/Vascular Endothelial Growth Factor-mediated
Angiogenesis by the Kruppel-like Factor KLF2. J. Biol. Chem. 2005;280:28848–28851.
doi: 10.1074/jbc.C500200200. [PubMed] [CrossRef] [Google Scholar]
75. Kawanami D., Mahabeleshwar G.H., Lin Z., Atkins
G.B., Hamik A., Haldar S.M., Maemura K., LaManna J.C., Jain M.K. Kruppel-like
Factor 2 Inhibits Hypoxia-inducible Factor 1α Expression and Function in the
Endothelium. J. Biol. Chem. 2009;284:20522–20530.
doi: 10.1074/jbc.M109.025346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J.,
Lee J., Provost P., Rådmark O., Kim S., et al. The nuclear RNase III Drosha
initiates microRNA processing. Nature. 2003;425:415–419.
doi: 10.1038/nature01957. [PubMed] [CrossRef] [Google Scholar]
77. Davis G.M., Haas M.A., Pocock R. MicroRNAs: Not
“fine-tuners” but key regulators of neuronal development and function. Front.
Neurol. 2015;6:245.
doi: 10.3389/fneur.2015.00245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Xiao S., Ma Y., Zhu H., Sun H., Yin Y., Feng G.
miRNA functional synergistic network analysis of mice with ischemic stroke. Neurol.
Sci. 2015;36:143–148.
doi: 10.1007/s10072-014-1904-4. [PubMed] [CrossRef] [Google Scholar]
79. Chan S.Y., Loscalzo J. MicroRNA-210: A unique and
pleiotropic hypoxamir. Cell Cycle. 2010;9:1072–1083.
doi: 10.4161/cc.9.6.11006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
80. Yang G.-Y., Zeng L., Liu J., Wang Y., Wang L., Weng
S., Tang Y., Zheng C., Cheng Q., Chen S. MicroRNA-210 as a novel blood
biomarker in acute cerebral ischemia. Front. Biosci. 2011;E3:1265–1272.
doi: 10.2741/e330. [PubMed] [CrossRef] [Google Scholar]
81. Qiu J., Zhou X.-Y., Zhou X.-G., Cheng R., Liu
H.-Y., Li Y. Neuroprotective effects of microRNA-210 on hypoxic-ischemic
encephalopathy. BioMed Res. Int. 2013;2013:350419.
doi: 10.1155/2013/350419. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
82. Tan K.S., Armugam A., Sepramaniam S., Lim K.Y.,
Setyowati K.D., Wang C.W., Jeyaseelan K. Expression Profile of MicroRNAs in
Young Stroke Patients. PLoS ONE. 2009;4:e7689.
doi: 10.1371/journal.pone.0007689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Minhas G., Mathur D., Ragavendrasamy B., Sharma
N.K., Paanu V., Anand A. Hypoxia in CNS Pathologies: Emerging Role of
miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies. Front.
Neurosci. 2017;11:386.
doi: 10.3389/fnins.2017.00386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
84. Bobryshev P., Bagaeva T., Filaretova L. Ischemic
preconditioning attenuates gastric ischemia-reperfusion injury through
involvement of glucocorticoids. J. Physiol. Pharmacol. 2009;60((Suppl.
7)):155–160. [PubMed] [Google Scholar]
85. Rybnikova E.A., Mironova V.I., Pivina S.G., Ordyan
N.E., Tulkova E.I., Samoilov M.O. Hormonal
Mechanisms of Neuroprotective Effects of the Mild Hypoxic Preconditioning in
Rats. 1st ed. Springer Nature
BV; Berlin/Heidelberg, Germany: 2008. p. 239. [PubMed] [Google Scholar]
86. Davis C., Hackett P. Advances in the prevention and
treatment of high altitude illness. Emerg. Med. Clin. 2017;35:241–260.
doi: 10.1016/j.emc.2017.01.002. [PubMed] [CrossRef] [Google Scholar]
87. Rybnikova E., Mironova V., Pivina S., Tulkova E.,
Ordyan N., Nalivaeva N., Turner A., Samoilov M. Involvement of the
hypothalamic-pituitary-adrenal axis in the antidepressant-like effects of mild
hypoxic preconditioning in rats. Psychoneuroendocrinology. 2007;32:813–823.
doi: 10.1016/j.psyneuen.2007.05.010. [PubMed] [CrossRef] [Google Scholar]
88. Vanderhaeghen T., Beyaert R., Libert C.
Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid
Signalling in Health and Disease. Front. Immunol. 2021;12:684085.
doi: 10.3389/fimmu.2021.684085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
89. Kodama T., Shimizu N., Yoshikawa N., Makino Y.,
Ouchida R., Okamoto K., Hisada T., Nakamura H., Morimoto C., Tanaka H. Role of
the Glucocorticoid Receptor for Regulation of Hypoxia-dependent Gene
Expression. J. Biol. Chem. 2003;278:33384–33391.
doi: 10.1074/jbc.M302581200. [PubMed] [CrossRef] [Google Scholar]
90. Lim W., Park C., Shim M.K., Lee Y.H., Lee Y.M., Lee
Y. Glucocorticoids suppress hypoxia-induced COX-2 and hypoxia inducible
factor-1α expression through the induction of glucocorticoid-induced leucine
zipper. Br. J. Pharmacol. 2014;171:735–745.
doi: 10.1111/bph.12491. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Hoiland R.L., Ainslie P.N., Wellington C.L., Cooper
J., Stukas S., Thiara S., Foster D., Fergusson N.A., Conway E.M., Menon D.K.,
et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans
Post–Cardiac Arrest. Circ. Res. 2021;129:583–597.
doi: 10.1161/CIRCRESAHA.121.319157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Barrot L., Asfar P., Mauny F., Winiszewski H.,
Montini F., Badie J., Quenot J.-P., Pili-Floury S., Bouhemad B., Louis G., et
al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress
Syndrome. N. Engl. J. Med. 2020;382:999–1008.
doi: 10.1056/NEJMoa1916431. [PubMed] [CrossRef] [Google Scholar]
93. Bardt T.F., Unterberg A.W., Härtl R., Kiening K.L.,
Schneider G.H., Lanksch W.R. Monitoring of brain tissue PO2 in traumatic brain
injury: Effect of cerebral hypoxia on outcome. In: Marmarou A., Bullock R.,
Avezaat C., Baethmann A., Becker D., Brock M., Hoff J., Nagai H., Reulen H.-J.,
Teasdale G., editors. Intracranial
Pressure and Neuromonitoring in Brain Injury. Springer;
Vienna, Austria: 1998. pp. 153–156. [PubMed] [Google Scholar]
94. Yan E.B., Satgunaseelan L., Paul E., Bye N., Nguyen
P., Agyapomaa D., Kossmann T., Rosenfeld J.V., Morganti-Kossmann C.
Post-Traumatic Hypoxia Is Associated with Prolonged Cerebral Cytokine
Production, Higher Serum Biomarker Levels, and Poor Outcome in Patients with
Severe Traumatic Brain Injury. J. Neurotrauma. 2013;31:618–629.
doi: 10.1089/neu.2013.3087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
95. Okonkwo D.O., Shutter L., Moore C., Temkin N.R.,
Puccio A.M., Madden C.J., Andaluz N., Chesnut R., Bullock M.R., Grant G.A., et
al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II. Crit.
Care Med. 2017;45:1907–1914.
doi: 10.1097/CCM.0000000000002619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
96. Welch J.F., Sutor T.W., Vose A.K., Perim R.R., Fox
E.J., Mitchell G.S. Synergy between Acute Intermittent Hypoxia and
Task-Specific Training. Exerc. Sport Sci. Rev. 2020;48:125–132.
doi: 10.1249/JES.0000000000000222. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
97. Gore A., Muralidhar M., Espey M.G., Degenhardt K.,
Mantell L.L. Hyperoxia sensing: From molecular mechanisms to significance in
disease. J. Immunotoxicol. 2010;7:239–254.
doi: 10.3109/1547691X.2010.492254. [PubMed] [CrossRef] [Google Scholar]
98. Bin-Jaliah I., Haffor A.-S. Ultrastructural
Morphological Alterations during Hyperoxia Exposure in Relation to Glutathione
Peroxidase Activity and Free Radicals Productions in the Mitochondria of the
Cortical Brain. Int. J. Morphol. 2018;36:1310–1315.
doi: 10.4067/S0717-95022018000401310. [CrossRef] [Google Scholar]
99. Chong Z.-Z., Lin S.H., Li F., Maiese K. The Sirtuin
Inhibitor Nicotinamide Enhances Neuronal Cell Survival During Acute Anoxic
Injury Through AKT, BAD, PARP, and Mitochondrial Associated. Curr.
Neurovascular Res. 2005;2:271–285.
doi: 10.2174/156720205774322584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
100. Terraneo L., Paroni R., Bianciardi P., Giallongo
T., Carelli S., Gorio A., Samaja M. Brain adaptation to hypoxia and hyperoxia
in mice. Redox Biol. 2017;11:12–20.
doi: 10.1016/j.redox.2016.10.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101. Felderhoff-Mueser U., Bittigau P., Sifringer M.,
Jarosz B., Korobowicz E., Mahler L., Piening T., Moysich A., Grune T., Thor F.,
et al. Oxygen causes cell death in the developing brain. Neurobiol.
Dis. 2004;17:273–282.
doi: 10.1016/j.nbd.2004.07.019. [PubMed] [CrossRef] [Google Scholar]
102. Zhang Y., Park T.S., Gidday J.M. Hypoxic
preconditioning protects human brain endothelium from ischemic apoptosis by
Akt-dependent survivin activation. Am. J. Physiol. Heart Circ.
Physiol. 2007;292:H2573–H2581.
doi: 10.1152/ajpheart.01098.2006. [PubMed] [CrossRef] [Google Scholar]
103. Nayak G.H., Prentice H.M., Milton S.L.
Neuroprotective signaling pathways are modulated by adenosine in the anoxia
tolerant turtle. J. Cereb. Blood Flow Metab. 2011;31:467–475.
doi: 10.1038/jcbfm.2010.109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104. Mao M., Zhiling W., Hui Z., Shengfu L., Dan Y.,
Jiping H. Cellular levels of TrkB and MAPK in the neuroprotective role of BDNF
for embryonic rat cortical neurons against hypoxia in vitro. Int.
J. Dev. Neurosci. 2005;23:515–521. [PubMed] [Google Scholar]
105. Digicaylioglu M., Bichet S., Marti H.H., Wenger
R.H., Rivas L.A., Bauer C., Gassmann M. Localization of specific erythropoietin
binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. USA. 1995;92:3717–3720.
doi: 10.1073/pnas.92.9.3717. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Sanchez P.E., Fares R.P., Risso J.-J., Bonnet C.,
Bouvard S., Le-Cavorsin M., Georges B., Moulin C., Belmeguenai A., Bodennec J.,
et al. Optimal neuroprotection by erythropoietin requires elevated expression
of its receptor in neurons. Proc. Natl. Acad. Sci. USA. 2009;106:9848–9853.
doi: 10.1073/pnas.0901840106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107. Sakanaka M., Wen T.-C., Matsuda S., Masuda S.,
Morishita E., Nagao M., Sasaki R. In vivo evidence that erythropoietin protects
neurons from ischemic damage. Proc. Natl. Acad. Sci. USA. 1998;95:4635–4640.
doi: 10.1073/pnas.95.8.4635. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Kato S., Aoyama M., Kakita H., Hida H., Kato I.,
Ito T., Goto T., Hussein M.H., Sawamoto K., Togari H., et al. Endogenous
erythropoietin from astrocyte protects the oligodendrocyte precursor cell
against hypoxic and reoxygenation injury. J. Neurosci. Res. 2011;89:1566–1574.
doi: 10.1002/jnr.22702. [PubMed] [CrossRef] [Google Scholar]
109. Brown G.C. Nitric oxide and neuronal death. Nitric
Oxide. 2010;23:153–165.
doi: 10.1016/j.niox.2010.06.001. [PubMed] [CrossRef] [Google Scholar]
110. Garry P.S., Ezra M., Rowland M.J., Westbrook J.,
Pattinson K.T.S. The role of the nitric oxide pathway in brain injury and its
treatment—From bench to bedside. Exp. Neurol. 2015;263:235–243.
doi: 10.1016/j.expneurol.2014.10.017. [PubMed] [CrossRef] [Google Scholar]
111. Cheng A., Wang S., Cai J., Rao M.S., Mattson M.P.
Nitric oxide acts in a positive feedback loop with BDNF to regulate neural
progenitor cell proliferation and differentiation in the mammalian brain. Dev.
Biol. 2003;258:319–333.
doi: 10.1016/S0012-1606(03)00120-9. [PubMed] [CrossRef] [Google Scholar]
112. Li S.-T., Pan J., Hua X.-M., Liu H., Shen S., Liu
J.-F., Li B., Tao B.-B., Ge X.-L., Wang X.-H., et al. Endothelial Nitric Oxide
Synthase Protects Neurons against Ischemic Injury through Regulation of
Brain-Derived Neurotrophic Factor Expression. CNS Neurosci. Ther. 2014;20:154–164.
doi: 10.1111/cns.12182. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
113. Brune B., Zhou J. The role of nitric oxide (NO) in
stability regulation of hypoxia inducible factor-1α (HIF-1α) Curr.
Med. Chem. 2003;10:845–855.
doi: 10.2174/0929867033457746. [PubMed] [CrossRef] [Google Scholar]
114. Chen Z.Y., Wang L., Asavaritkrai P., Noguchi C.T.
Up-regulation of erythropoietin receptor by nitric oxide mediates hypoxia
preconditioning. J. Neurosci. Res. 2010;88:3180–3188.
doi: 10.1002/jnr.22473. [PubMed] [CrossRef] [Google Scholar]
115. Kasuno K., Takabuchi S., Fukuda K., Kizaka-Kondoh
S., Yodoi J., Adachi T., Semenza G.L., Hirota K. Nitric Oxide Induces
Hypoxia-inducible Factor 1 Activation That Is Dependent on MAPK and
Phosphatidylinositol 3-Kinase Signaling. J. Biol. Chem. 2004;279:2550–2558.
doi: 10.1074/jbc.M308197200. [PubMed] [CrossRef] [Google Scholar]
116. Haase V.H. The VHL/HIF oxygen-sensing pathway and
its relevance to kidney disease. Kidney Int. 2006;69:1302–1307.
doi: 10.1038/sj.ki.5000221. [PubMed] [CrossRef] [Google Scholar]
117. Hoehn T., Felderhoff-Mueser U., Maschewski K.,
Stadelmann C., Sifringer M., Bittigau P., Koehne P., Hoppenz M., Obladen M.,
Bührer C. Hyperoxia Causes Inducible Nitric Oxide Synthase-Mediated Cellular
Damage to the Immature Rat Brain. Pediatr. Res. 2003;54:179–184.
doi: 10.1203/01.PDR.0000075220.17631.F1. [PubMed] [CrossRef] [Google Scholar]
118. Zhilyaev S.Y., Moskvin A.N., Platonova T.F.,
Gutsaeva D.R., Churilina I.V., Demchenko I.T. Hyperoxic Vasoconstriction in the
Brain Is Mediated by Inactivation of Nitric Oxide by Superoxide Anions. Neurosci.
Behav. Physiol. 2003;33:783–787.
doi: 10.1023/A:1025145331149. [PubMed] [CrossRef] [Google Scholar]
119. Rocha-Ferreira E., Rudge B., Hughes M.P., Rahim
A.A., Hristova M., Robertson N.J. Immediate Remote Ischemic Postconditioning
Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. Oxidative
Med. Cell. Longev. 2016;2016:5763743.
doi: 10.1155/2016/5763743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
120. Attaye I., Smulders Y.M., De Waard M.C., Straaten
H.M.O.-V., Smit B., Van Wijhe M.H., Musters R.J., Koolwijk P., Man A.M.E.S. The
effects of hyperoxia on microvascular endothelial cell proliferation and
production of vaso-active substances. Intensiv. Care Med. Exp. 2017;5:22.
doi: 10.1186/s40635-017-0135-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
121. Demchenko I.T., Oury T.D., Crapo J.D., Piantadosi
C.A. Regulation of the Brain’s Vascular Responses to Oxygen. Circ.
Res. 2002;91:1031–1037.
doi: 10.1161/01.RES.0000043500.03647.81. [PubMed] [CrossRef] [Google Scholar]
122. Pham H., Vottier G., Pansiot J., Duong-Quy S.,
Bollen B., Dalous J., Gallego J., Mercier J.-C., Dinh-Xuan A.T., Bonnin P., et
al. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats. Exp.
Neurol. 2014;252:114–123.
doi: 10.1016/j.expneurol.2013.11.025. [PubMed] [CrossRef] [Google Scholar]
123. Brenner M., Stein D., Hu P., Kufera J., Wooford M.,
Scalea T. Association Between Early Hyperoxia and Worse Outcomes After
Traumatic Brain Injury. Arch. Surg. 2012;147:1042–1046.
doi: 10.1001/archsurg.2012.1560. [PubMed] [CrossRef] [Google Scholar]
124. Davis W.B., Rennard S.I., Bitterman P.B., Crystal
R.G. Pulmonary oxygen toxicity: Early reversible changes in human alveolar
structures induced by hyperoxia. N. Engl. J. Med. 1983;309:878–883.
doi: 10.1056/NEJM198310133091502. [PubMed] [CrossRef] [Google Scholar]
125. Reynolds R.A., Amin S.N., Jonathan S.V., Tang A.R.,
Lan M., Wang C., Bastarache J.A., Ware L.B., Thompson R.C. Hyperoxemia and
Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Neurocritical
Care. 2021;35:30–38.
doi: 10.1007/s12028-020-01136-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Chu D.K., Kim L.H.-Y., Young P.J., Zamiri N.,
Almenawer S.A., Jaeschke R., Szczeklik W., Schünemann H.J., Neary J.D.,
Alhazzani W. Mortality and morbidity in acutely ill adults treated with liberal
versus conservative oxygen therapy (IOTA): A systematic review and
meta-analysis. Lancet. 2018;391:1693–1705.
doi: 10.1016/S0140-6736(18)30479-3. [PubMed] [CrossRef] [Google Scholar]
127. Suzuki S. Oxygen administration for postoperative
surgical patients: A narrative review. J. Intensive Care. 2020;8:79.
doi: 10.1186/s40560-020-00498-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
128. Smit B., Smulders Y.M., van der Wouden J.C.,
Oudemans-van Straaten H.M., Spoelstra-de Man A.M.E. Hemodynamic effects of
acute hyperoxia: Systematic review and meta-analysis. Crit.
Care. 2018;22:45.
doi: 10.1186/s13054-018-1968-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129. Chatzipanteli K., Alonso O.F., Kraydieh S.,
Dietrich W.D. Importance of Posttraumatic Hypothermia and Hyperthermia on the
Inflammatory Response after Fluid Percussion Brain Injury: Biochemical and
Immunocytochemical Studies. J. Cereb. Blood Flow Metab. 2000;20:531–542.
doi: 10.1097/00004647-200003000-00012. [PubMed] [CrossRef] [Google Scholar]
130. Thompson H.J., Tkacs N.C., Saatman K.E., Raghupathi
R., McIntosh T.K. Hyperthermia following traumatic brain injury: A critical
evaluation. Neurobiol. Dis. 2003;12:163–173.
doi: 10.1016/S0969-9961(02)00030-X. [PubMed] [CrossRef] [Google Scholar]
131. Truettner J.S., Bramlett H.M., Dietrich W.D.
Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the
Cerebral Vasculature. J. Neurotrauma. 2017;35:940–952.
doi: 10.1089/neu.2017.5303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Huang T., Solano J., He D., Loutfi M., Dietrich
W.D., Kuluz J.W. Traumatic Injury Activates MAP Kinases in Astrocytes:
Mechanisms of Hypothermia and Hyperthermia. J. Neurotrauma. 2009;26:1535–1545.
doi: 10.1089/neu.2008.0743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Kurokawa H., Ito H., Terasaki M., Matsui H.
Hyperthermia enhances photodynamic therapy by regulation of HCP1 and ABCG2
expressions via high level ROS generation. Sci. Rep. 2019;9:1638.
doi: 10.1038/s41598-018-38460-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Svedung Wettervik T.M., Engquist H., Lenell S.,
Howells T., Hillered L., Rostami E., Lewén A., Enblad P. Systemic Hyperthermia
in Traumatic Brain Injury—Relation to Intracranial Pressure Dynamics, Cerebral
Energy Metabolism, and Clinical Outcome. J. Neurosurg. Anesthesiol. 2021;33:329–336.
doi: 10.1097/ANA.0000000000000695. [PubMed] [CrossRef] [Google Scholar]
135. Saxton C. Effects of severe heat stress on
respiration and metabolic rate in resting man. Aviat. Space Environ. Med. 1981;52:281–286. [PubMed] [Google Scholar]
136. Mickley G.A., Cobb B.L., Farrell S.T. Brain
hyperthermia alters local cerebral glucose utilization: A comparison of
hyperthermic agents. Int. J. Hyperth. 1997;13:99–114.
doi: 10.3109/02656739709056434. [PubMed] [CrossRef] [Google Scholar]
137. Nunneley S.A., Martin C.C., Slauson J.W., Hearon
C.M., Nickerson L.D.H., Mason P.A. Changes in regional cerebral metabolism
during systemic hyperthermia in humans. J. Appl. Physiol. 2002;92:846–851.
doi: 10.1152/japplphysiol.00072.2001. [PubMed] [CrossRef] [Google Scholar]
138. Spiotta A.M., Stiefel M.F., Heuer G.G., Bloom S.,
Maloney-Wilensky E., Yang W., Grady M.S., Le Roux P.D. Brain Hyperthermia After
Traumatic Brain Injury Does Not Reduce Brain Oxygen. Neurosurgery. 2008;62:864–872.
doi: 10.1227/01.neu.0000316900.63124.ce. [PubMed] [CrossRef] [Google Scholar]
139. Schumacker P.T., Rowland J., Saltz S., Nelson D.P.,
Wood L.D. Effects of hyperthermia and hypothermia on oxygen extraction by
tissues during hypovolemia. J. Appl. Physiol. 1987;63:1246–1252.
doi: 10.1152/jappl.1987.63.3.1246. [PubMed] [CrossRef] [Google Scholar]
140. Edvinsson L., MacKenzie E.T., McCulloch J. Cerebral Blood Flow
and Metabolism. Raven Press; New York, NY,
USA: 1993. [Google Scholar]
141. Crandall C.G., Gonzalez-Alonso J. Cardiovascular
function in the heat-stressed human. Acta Physiol. 2010;199:407–423.
doi: 10.1111/j.1748-1716.2010.02119.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
142. Gross P.M., Harper A.M., Teasdale G.M. Interaction
of histamine with noradrenergic constrictory mechanisms in cat cerebral
arteries and veins. Can. J. Physiol. Pharmacol. 1983;61:756–763.
doi: 10.1139/y83-117. [PubMed] [CrossRef] [Google Scholar]
143. Edvinsson L. Sympathetic control of cerebral
circulation. Trends Neurosci. 1982;5:425–429.
doi: 10.1016/0166-2236(82)90232-6. [CrossRef] [Google Scholar]
144. Watson P., Black K.E., Clark S.C., Maughan R.J.
Exercise in the heat: Effect of fluid ingestion on blood-brain barrier
permeability. Med. Sci. Sport. Exerc. 2006;38:2118–2124.
doi: 10.1249/01.mss.0000235356.31932.0a. [PubMed] [CrossRef] [Google Scholar]
145. Watson P., Shirreffs S.M., Maughan R.J. Blood-brain
barrier integrity may be threatened by exercise in a warm environment. Am.
J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R1689–R1694.
doi: 10.1152/ajpregu.00676.2004. [PubMed] [CrossRef] [Google Scholar]
146. Walter E.J., Hanna-Jumma S., Carraretto M., Forni
L. The pathophysiological basis and consequences of fever. Crit.
Care. 2016;20:200.
doi: 10.1186/s13054-016-1375-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
147. Kilpatrick M.M., Lowry D.W., Firlik A.D., Yonas H.,
Marion D.W. Hyperthermia in the neurosurgical intensive care unit. Neurosurgery. 2000;47:850–856.
doi: 10.1097/00006123-200010000-00011. [PubMed] [CrossRef] [Google Scholar]
148. Weng W.-J., Yang C., Huang X.-J., Zhang Y.-M., Liu
J.-F., Yao J.-M., Zi Zhang Z., Wu X., Mei T., Zhang C., et al. Effects of brain
temperature on the outcome of patients with traumatic brain injury: A
prospective observational study. J. Neurotrauma. 2019;36:1168–1174.
doi: 10.1089/neu.2018.5881. [PubMed] [CrossRef] [Google Scholar]
149. Holtzclaw B.J. The febrile response in critical
care: State of the science. Heart Lung J. Crit. Care. 1992;21:482–501. [PubMed] [Google Scholar]
150. Bain A.R., Smith K.J., Lewis N.C., Foster G.E.,
Wildfong K.W., Willie C.K., Hartley G.L., Cheung S.S., Ainslie P.N. Regional
changes in brain blood flow during severe passive hyperthermia: Effects of PaCO2 and extracranial blood
flow. J. Appl. Physiol. 2013;115:653–659.
doi: 10.1152/japplphysiol.00394.2013. [PubMed] [CrossRef] [Google Scholar]
151. Stocchetti N., Protti A., Lattuada M., Magnoni S.,
Longhi L., Ghisoni L., Egidi M., Zanier E. Impact of pyrexia on neurochemistry
and cerebral oxygenation after acute brain injury. J. Neurol. Neurosurg.
Psychiatry. 2005;76:1135–1139.
doi: 10.1136/jnnp.2004.041269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
152. Rossi S., Zanier E.R., Mauri I., Columbo A.,
Stocchetti N. Brain temperature, body core temperature, and intracranial
pressure in acute cerebral damage. J. Neurol. Neurosurg.
Psychiatry. 2001;71:448–454.
doi: 10.1136/jnnp.71.4.448. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
153. Nyholm L., Howells T., Lewén A., Hillered L.,
Enblad P. The influence of hyperthermia on intracranial pressure, cerebral
oximetry and cerebral metabolism in traumatic brain injury. Upsala
J. Med. Sci. 2017;122:177–184.
doi: 10.1080/03009734.2017.1319440. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
154. Wang H., Wang B., Normoyle K.P., Jackson K.,
Spitler K., Sharrock M.F., Miller C.M., Best C., Llano D., Du R. Brain
temperature and its fundamental properties: A review for clinical
neuroscientists. Front. Neurosci. 2014;8:307.
doi: 10.3389/fnins.2014.00307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Le Roux P., Menon D.K., Citerio G., Vespa P., Bader
M.K., Brophy G.M., Diringer M.N., Stocchetti N., Videtta W., Armonda R., et al.
Consensus summary statement of the international multidisciplinary consensus
conference on multimodality monitoring in neurocritical care. Neurocritical
Care. 2014;21:1–26.
doi: 10.1007/s12028-014-0041-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
156. Rass V., Huber L., Ianosi B.-A., Kofler M., Lindner
A., Picetti E., Ortolano F., Beer R., Rossi S., Smielewski P., et al. The
Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with
Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness
Research in Traumatic Brain Injury Substudy. Ther. Hypothermia Temp. Manag. 2020;11:122–131.
doi: 10.1089/ther.2020.0027. [PubMed] [CrossRef] [Google Scholar]
157. Kil H.Y., Zhang J., Piantadosi C.A. Brain
Temperature Alters Hydroxyl Radical Production during Cerebral
Ischemia/Reperfusion in Rats. J. Cereb. Blood Flow Metab. 1996;16:100–106.
doi: 10.1097/00004647-199601000-00012. [PubMed] [CrossRef] [Google Scholar]
158. Dempsey R.J., Combs D.J., Maley M.E., Cowen D.E.,
Roy M.W., Donaldson D.L. Moderate hypothermia reduces postischemic edema
development and leukotriene production. Neurosurgery. 1987;21:177–181.
doi: 10.1227/00006123-198708000-00007. [PubMed] [CrossRef] [Google Scholar]
159. Haba K., Ogawa N., Mizukawa K., Mori A. Time course
of changes in lipid peroxidation, pre-and postsynaptic cholinergic indices,
NMDA receptor binding and neuronal death in the gerbil hippocampus following
transient ischemia. Brain Res. 1991;540:116–122.
doi: 10.1016/0006-8993(91)90497-J. [PubMed] [CrossRef] [Google Scholar]
160. Wells C.E. The Cerebral Circulation: The Clinical
Significance of Current Concepts. Arch. Neurol. 1960;3:319–331.
doi: 10.1001/archneur.1960.00450030097010. [PubMed] [CrossRef] [Google Scholar]
161. Choi H.A., Badjatia N., Mayer S.A. Hypothermia for
acute brain injury—mechanisms and practical aspects. Nat.
Rev. Neurol. 2012;8:214–222.
doi: 10.1038/nrneurol.2012.21. [PubMed] [CrossRef] [Google Scholar]
162. Dietrich W.D., Halley M., Valdes I., Busto R.
Interrelationships between increased vascular permeability and acute neuronal
damage following temperature-controlled brain ischemia in rats. Acta
Neuropathol. 1991;81:615–625.
doi: 10.1007/BF00296371. [PubMed] [CrossRef] [Google Scholar]
163. Ginsberg M.D., Sternau L.L., Globus M.Y., Dietrich
W.D., Busto R. Therapeutic modulation of brain temperature: Relevance to
ischemic brain injury. Cerebrovasc. Brain Metab. Rev. 1992;4:189–225. [PubMed] [Google Scholar]
164. Kramer R.S., Sanders A.P., Lesage A.M., Woodhall
B., Sealy W.C. The effect of profound hypothermia on preservation of cerebral
ATP content during circulatory arrest. J. Thorac. Cardiovasc. Surg. 1968;56:699–709.
doi: 10.1016/S0022-5223(19)42797-9. [PubMed] [CrossRef] [Google Scholar]
165. Taft W.C., Yang K., Dixon C.E., Clifton G.L., Hayes
R.L. Hypothermia attenuates the loss of hippocampal microtubule-associated
protein 2 (MAP2) following traumatic brain injury. J. Cereb. Blood Flow Metab. 1993;13:796–802.
doi: 10.1038/jcbfm.1993.101. [PubMed] [CrossRef] [Google Scholar]
166. Dede S., Deger Y., Meral I. Effect of Short-term
Hypothermia on Lipid Peroxidation and Antioxidant Enzyme Activity in Rats. J.
Vet. Med. Ser. A. 2002;49:286–288.
doi: 10.1046/j.1439-0442.2002.00449.x. [PubMed] [CrossRef] [Google Scholar]
167. Truettner J.S., Bramlett H.M., Dietrich W.D.
Posttraumatic therapeutic hypothermia alters microglial and macrophage
polarization toward a beneficial phenotype. J. Cereb. Blood Flow Metab. 2017;37:2952–2962.
doi: 10.1177/0271678X16680003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
168. Erecinska M., Thoresen M., Silver I.A. Effects of
Hypothermia on Energy Metabolism in Mammalian Central Nervous System. J.
Cereb. Blood Flow Metab. 2003;23:513–530.
doi: 10.1097/01.WCB.0000066287.21705.21. [PubMed] [CrossRef] [Google Scholar]
169. Walter B., Bauer R., Kuhnen G., Fritz H., Zwiener
U. Coupling of cerebral blood flow and oxygen metabolism in infant pigs during
selective brain hypothermia. J. Cereb. Blood Flow Metab. 2000;20:1215–1224.
doi: 10.1097/00004647-200008000-00007. [PubMed] [CrossRef] [Google Scholar]
170. Jensen A., Garnier Y., Berger R. Dynamics of fetal
circulatory responses to hypoxia and asphyxia. Eur. J. Obstet. Gynecol. Reprod.
Biol. 1999;84:155–172.
doi: 10.1016/S0301-2115(98)00325-X. [PubMed] [CrossRef] [Google Scholar]
171. Chihara H., Blood A.B., Hunter C.J., Power G.G.
Effect of Mild Hypothermia and Hypoxia on Blood Flow and Oxygen Consumption of
the Fetal Sheep Brain. Pediatr. Res. 2003;54:665–671.
doi: 10.1203/01.PDR.0000084115.31416.17. [PubMed] [CrossRef] [Google Scholar]
172. Hashem M., Zhang Q., Wu Y., Johnson T.W., Dunn J.F.
Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter
metabolic rate for oxygen: A hypothermia validation study. NeuroImage. 2020;206:116315.
doi: 10.1016/j.neuroimage.2019.116315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
173. Pichler G., Baumgartner S., Biermayr M., Dempsey
E., Fuchs H., Goos T.G., Lista G., Lorenz L., Karpinski L., Mitra S., et al.
Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm
neonates during immediate transition after birth (COSGOD III): An
investigator-initiated, randomized, multi-center, multi-national, clinical
trial on additional cerebral tissue oxygen saturation monitoring combined with
defined treatment guidelines versus standard monitoring and treatment as usual
in premature infants during immediate transition: Study protocol for a
randomized controlled trial. Trials. 2019;20:178.
doi: 10.1186/s13063-019-3258-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
174. Laurikkala J., Aneman A., Peng A., Reinikainen M.,
Pham P., Jakkula P., Hästbacka J., Wilkman E., Loisa P., Toppila J., et al.
Association of deranged cerebrovascular reactivity with brain injury following
cardiac arrest: A post-hoc analysis of the COMACARE trial. Crit.
Care. 2021;25:350.
doi: 10.1186/s13054-021-03764-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
175. Clifton G.L., Allen S., Barrodale P., Plenger P.,
Berry J., Koch S., Fletcher J., Hayes R.L., Choi S.C. A Phase II Study of
Moderate Hypothermia in Severe Brain Injury. J. Neurotrauma. 1993;10:263–271.
doi: 10.1089/neu.1993.10.263. [PubMed] [CrossRef] [Google Scholar]
176. Rösli D., Schnüriger B., Candinas D., Haltmeier T.
The Impact of Accidental Hypothermia on Mortality in Trauma Patients Overall
and Patients with Traumatic Brain Injury Specifically: A Systematic Review and
Meta-Analysis. World J. Surg. 2020;44:4106–4117.
doi: 10.1007/s00268-020-05750-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
177. Wu X., Tao Y., Marsons L., Dee P., Yu D., Guan Y.,
Zhou X. The effectiveness of early prophylactic hypothermia in adult patients
with traumatic brain injury: A systematic review and meta-analysis. Aust.
Crit. Care. 2021;34:83–91.
doi: 10.1016/j.aucc.2020.05.005. [PubMed] [CrossRef] [Google Scholar]
178. Tokutomi T., Morimoto K., Miyagi T., Yamaguchi S.,
Ishikawa K., Shigemori M. Optimal Temperature For The Management Of Severe
Traumatic Brain Injury: Effect Of Hypothermia On Intracranial Pressure,
Systemic And Intracranial Hemodynamics, And Metabolism. Neurosurgery. 2007;61((Suppl.
1)):102–112. doi: 10.1227/01.neu.0000279221.38257.1a. [PubMed] [CrossRef] [Google Scholar]
179. Ghosh A., Highton D., Kolyva C., Tachtsidis I.,
Elwell C.E., Smith M. Hyperoxia results in increased aerobic metabolism
following acute brain injury. J. Cereb. Blood Flow Metab. 2017;37:2910–2920.
doi: 10.1177/0271678X16679171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
180. Yang D., Ma L., Wang P., Yang D., Zhang Y., Zhao
X., Lv J., Zhang J., Zhang Z., Gao F. Normobaric oxygen inhibits AQP4 and NHE1
expression in experimental focal ischemic stroke. Int. J. Mol. Med. 2019;43:1193–1202.
doi: 10.3892/ijmm.2018.4037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
181. Liang J., Qi Z., Liu W., Wang P., Shi W., Dong W.,
Ji X., Luo Y., Liu K.J. Normobaric Hyperoxia Slows Blood–Brain Barrier Damage
and Expands the Therapeutic Time Window for Tissue-Type Plasminogen Activator
Treatment in Cerebral Ischemia. Stroke. 2015;46:1344–1351.
doi: 10.1161/STROKEAHA.114.008599. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
182. Braswell C., Crowe D.T. Hyperbaric oxygen therapy. Compend. Contin. Educ. Vet. 2012;34:E1–E6. [PubMed] [Google Scholar]
183. Sanchez E.C. Mechanisms of action of hyperbaric
oxygenation in stroke: A review. Crit. Care Nurs. Q. 2013;36:290–298.
doi: 10.1097/CNQ.0b013e318294e9e3. [PubMed] [CrossRef] [Google Scholar]
184. Liang F., Sun L., Yang J., Liu X.-H., Zhang J., Zhu
W.-Q., Yang L., Nan D. The effect of different atmosphere absolute hyperbaric
oxygen on the expression of extracellular histones after traumatic brain injury
in rats. Cell Stress Chaperones. 2020;25:1013–1024.
doi: 10.1007/s12192-020-01137-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
185. Xu Z., Huang Y., Mao P., Zhang J., Li Y. Sepsis and
ARDS: The dark side of histones. Mediat. Inflamm. 2015;2015:205054.
doi: 10.1155/2015/205054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
186. Palzur E., Vlodavsky E., Mulla H., Arieli R.,
Feinsod M., Soustiel J.F. Hyperbaric oxygen therapy for reduction of secondary
brain damage in head injury: An animal model of brain contusion. J.
Neurotrauma. 2004;21:41–48.
doi: 10.1089/089771504772695931. [PubMed] [CrossRef] [Google Scholar]
187. Palzur E., Zaaroor M., Vlodavsky E., Milman F.,
Soustiel J.F. Neuroprotective effect of hyperbaric oxygen therapy in brain
injury is mediated by preservation of mitochondrial membrane properties. Brain
Res. 2008;1221:126–133.
doi: 10.1016/j.brainres.2008.04.078. [PubMed] [CrossRef] [Google Scholar]
188. Rockswold G.L., Ford S.E., Anderson D.C., Bergman
T.A., Sherman R.E. Results of a prospective randomized trial for treatment of
severely brain-injured patients with hyperbaric oxygen. J.
Neurosurg. 1992;76:929–934.
doi: 10.3171/jns.1992.76.6.0929. [PubMed] [CrossRef] [Google Scholar]
189. Rockswold S.B., Rockswold G.L., Zaun D.A., Liu J. A
prospective, randomized Phase II clinical trial to evaluate the effect of
combined hyperbaric and normobaric hyperoxia on cerebral metabolism,
intracranial pressure, oxygen toxicity, and clinical outcome in severe
traumatic brain injury. J. Neurosurg. 2013;118:1317–1328.
doi: 10.3171/2013.2.JNS121468. [PubMed] [CrossRef] [Google Scholar]
190. Harch P.G., Andrews S.R., Rowe C.J., Lischka J.R.,
Townsend M.H., Yu Q., E Mercante D. Hyperbaric oxygen therapy for mild
traumatic brain injury persistent postconcussion syndrome: A randomized
controlled trial. Med. Gas Res. 2020;10:8–20.
doi: 10.4103/2045-9912.279978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
191. Amir H., Shai E. The Hyperoxic-Hypoxic Paradox. Biomolecules. 2020;10:958.
doi: 10.3390/biom10060958. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
192. Annoni F., Peluso L., Bogossian E.G., Creteur J.,
Zanier E., Taccone F. Brain Protection after Anoxic Brain Injury: Is Lactate
Supplementation Helpful? Cells. 2021;10:1714.
doi: 10.3390/cells10071714. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
193. Phillis J.W., Song D., Guyot L.L., O’Regan M.H.
Lactate reduces amino acid release and fuels recovery of function in the
ischemic brain. Neurosci. Lett. 1999;272:195–198.
doi: 10.1016/S0304-3940(99)00584-4. [PubMed] [CrossRef] [Google Scholar]
194. Berthet C., Lei H., Thevenet J., Gruetter R.,
Magistretti P.J., Hirt L. Neuroprotective role of lactate after cerebral
ischemia. J. Cereb. Blood Flow Metab. 2009;29:1780–1789.
doi: 10.1038/jcbfm.2009.97. [PubMed] [CrossRef] [Google Scholar]
195. Horn T., Klein J. Neuroprotective effects of
lactate in brain ischemia: Dependence on anesthetic drugs. Neurochem.
Int. 2013;62:251–257.
doi: 10.1016/j.neuint.2012.12.017. [PubMed] [CrossRef] [Google Scholar]
196. Berthet C., Castillo X., Magistretti P.J., Hirt L.
New evidence of neuroprotection by lactate after transient focal cerebral
ischaemia: Extended benefit after intracerebroventricular injection and
efficacy of intravenous administration. Cerebrovasc. Dis. 2012;34:329–335.
doi: 10.1159/000343657. [PubMed] [CrossRef] [Google Scholar]
197. Ichai C., Armando G., Orban J.-C., Berthier F.,
Rami L., Samat-Long C., Grimaud D., Leverve X. Sodium lactate versus mannitol
in the treatment of intracranial hypertensive episodes in severe traumatic
brain-injured patients. Intensiv. Care Med. 2009;35:471–479.
doi: 10.1007/s00134-008-1283-5. [PubMed] [CrossRef] [Google Scholar]
198. Bouzat P., Sala N., Suys T., Zerlauth J.-B.,
Marques-Vidal P., Feihl F., Bloch J., Messerer M., Levivier M., Meuli R., et
al. Cerebral metabolic effects of exogenous lactate supplementation on the
injured human brain. Intensiv. Care Med. 2014;40:412–421.
doi: 10.1007/s00134-013-3203-6. [PubMed] [CrossRef] [Google Scholar]
199. Krep H., Breil M., Sinn D., Hagendorff A., Hoeft
A., Fischer M. Effects of hypertonic versus isotonic infusion therapy on
regional cerebral blood flow after experimental cardiac arrest cardiopulmonary
resuscitation in pigs. Resuscitation. 2004;63:73–83.
doi: 10.1016/j.resuscitation.2004.03.023. [PubMed] [CrossRef] [Google Scholar]
200. Ros J., Pecinska N., Alessandri B., Landolt H.,
Fillenz M. Lactate reduces glutamate-induced neurotoxicity in rat cortex. J.
Neurosci. Res. 2001;66:790–794.
doi: 10.1002/jnr.10043. [PubMed] [CrossRef] [Google Scholar]
201. Sørensen A.T., Ledri M., Melis M., Nikitidou Ledri
L., Andersson M., Kokaia M. Altered Chloride Homeo-stasis Decreases the Action
Potential Threshold and Increases Hyperexcitability in Hippocampal Neu-rons. eNeuro. 2018;4 doi: 10.1523/ENEURO.0172-17.2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Published on 5 May 2024